User Documentation for KINSOL v6.5.1
SUNDIALS v6.5.1

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

March 30, 2023

aials

<
S

(Vo)

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker,
Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction
1.1 Historical Background
1.2 Changes from previous versions
1.3 Reading this User Guide
1.4 SUNDIALS License and Notices
1.5 Acknowledgments
2 Mathematical Considerations
2.1 Basic Newtoniteration
2.2 Newton method variants
2.3 Jacobian information update strategy
24 Scaling o
2.5 Globalization strategy
2.6 Nonlinear iteration stopping criteria
2.7 Additional constraints
2.8 Residual monitoring for Modified Newton method . .
2.9 Stopping criteria for iterative linear solvers
2.10 Difference quotient Jacobian approximations
2.11 Basic Fixed Pointiteration
2.12 Anderson Acceleration
2.13 Anderson Acceleration QR Factorization
2.14 Fixed-point - Anderson Acceleration Stopping Criterion
2.15 Picard - Anderson Acceleration Stopping Criterion . .
3 Code Organization
3.1 KINSOL organization
4 Using SUNDIALS
4.1 The SUNContext Type
4.2 SUNDIALS Status Logging
4.3 Performance Profiling
4.4 SUNDIALS Version Information
4.5 SUNDIALS Fortran Interface
4.6 Features for GPU Accelerated Computing
5 Using KINSOL for the Solution of Nonlinear Systems
5.1 Access to library and header files
52 DataTypes i
53 Headerfiles.
5.4 A skeleton of the user’s main program
5.5 User-callable functions
5.6 User-supplied functions
5.7 A parallel band-block-diagonal preconditioner module

DN —

22
22
24

25
25
26
26
27
27
28
28
28
29
29
30
30
31
32
32

33
33

37
37
42
46
49
50
58

61
61
62
64
64
66
93
98

5.8

Alternative to KINSOL for difficult systems

Vector Data Structures

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Description of the NVECTOR Modules o it
Description of the NVECTOR operationsttt
NVECTOR functions used by KINSOL et
The NVECTOR_SERIAL Module s
The NVECTOR_PARALLEL Module i
The NVECTOR_OPENMP Module e e
The NVECTOR_PTHREADS Module it i i
The NVECTOR_PARHYP Module
The NVECTOR_PETSCModule i
The NVECTOR_CUDA Module ettt e e e e e
The NVECTOR_HIP Module e e e e e
The NVECTOR_SYCL Module e e e e e
The NVECTOR_RAJA Module et e i e
The NVECTOR_KOKKOS Module e et
The NVECTOR_OPENMPDEV Module i
The NVECTOR_TRILINOS Module ettt
The NVECTOR_MANYVECTOR Module i
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module i e
NVECTOR Examples oo o e e e e e e e e e e e e e e

Matrix Data Structures

7.1
7.2
7.3
1.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Modulet
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX_BAND Module it
The SUNMATRIX_CUSPARSE Module
The SUNMATRIX_SPARSE Module i
The SUNMATRIX_SLUNRLOC Module i i
The SUNMATRIX_KOKKOSDENSE Module
SUNMATRIX Examples o o o e
SUNMatrix functions used by KINSOL et et

Linear Algebraic Solvers

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

The SUNLinearSolver APL e e e
KINSOL SUNLinearSolver interface i i it i e e
The SUNLinSol_Band Module e e
The SUNLinSol Dense Module e e e e e
The SUNLinSol_KLU Module e e e e e
The SUNLinSol_LapackBand Module it
The SUNLinSol_LapackDense Module ittt
The SUNLinSol_MagmaDense Module
The SUNLinSol OneMklDense Module i ii .
The SUNLinSol PCG Module o e e e e e s
The SUNLinSol_SPBCGS Module e e e e s e
The SUNLinSol_SPFGMR Module e e e e e
The SUNLinSol_SPGMR Module e e e e e e e e e
The SUNLinSol_SPTFQMR Module it ittt
The SUNLinSol_SuperLUDIST Module i

ii

8.16 The SUNLinSol_SuperLUMT Module ittt 273

8.17 The SUNLinSol_cuSolverSp_batchQR Module 276
8.18 The SUNLINEARSOLVER_GINKGO Module 277
8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module 280
8.20 SUNLinearSolver Examples L e 282
9 Tools for Memory Management 283
9.1 The SUNMemoryHelper API e 283
9.2 The SUNMemoryHelper_Cuda Implementation 288
9.3 The SUNMemoryHelper_Hip Implementation 290
9.4 The SUNMemoryHelper_Sycl Implementation, 292
10 SUNDIALS Installation Procedure 295
10.1 CMake-based installation e e 296
10.2 Installed libraries and exported header files, 317
11 KINSOL Constants 323
11.1 KINSOL Input CONStants o v v v v i i e 323
11.2 KINSOL output COnStants v v v v v v v et e e e e e e e e e e e e e e e e e 324
12 Appendix: SUNDIALS Release History 327
Bibliography 329
Index 333

iii

Chapter 1

Introduction

KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL gebraic equation
Solvers [31]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities.

KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov solver technology. A fixed point iter-
ation is also included with the release of KINSOL v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In particular, the NKSOL
package, written at LLNL, was the first Newton-Krylov solver package written for solution of systems arising in the
solution of partial differential equations [16]. This Fortran code made use of Newton’s method to solve the discrete
nonlinear systems and applied a preconditioned Krylov linear solver for solution of the Jacobian system at each non-
linear iteration. The key to the Newton-Krylov method was that the matrix-vector multiplies required by the Krylov
method could effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required for the solver as
a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to distributed memory
parallel machines. Both Newton and Krylov methods are easily implemented in parallel, and this effort gave rise to the
KINSOL package. KINSOL is similar to NKSOL in functionality, except that it provides for more options in the choice
of linear system methods and tolerances, and has a more modular design to provide flexibility for future enhancements.

At present, KINSOL may utilize a variety of Krylov methods provided in SUNDIALS. These methods include the GM-
RES (Generalized Minimal RESidual) [41], FGMRES (Flexible Generalized Minimum RESidual) [40], Bi-CGStab
(Bi-Conjugate Gradient Stabilized) [45], TFQMR (Transpose-Free Quasi-Minimal Residual) [27], and PCG (Precon-
ditioned Conjugate Gradient) [30] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow for a user-supplied
preconditioner, and, for most problems, preconditioning is essential for an efficient solution. For very large nonlinear
algebraic systems, the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice. However, users
are encouraged to compare all options, especially if encountering convergence failures with GMRES. Bi-CGStab and
TFQMR have an advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in that it is designed
to support preconditioners that vary between iterations (e.g., iterative methods). PCG exhibits rapid convergence and
minimal workspace vectors, but only works for symmetric linear systems.

User Documentation for KINSOL, v6.5.1

For the sake of completeness in functionality, direct linear system solvers are included in KINSOL. These include
methods for both dense and banded linear systems, with Jacobians that are either user-supplied or generated internally
by difference quotients. KINSOL also includes interfaces to sparse direct solvers, including KLU [3, 19] and the
threaded sparse direct solver, SuperLU_MT [8, 21, 35], among others (see Chapter §8 for further details).

In the process of translating NKSOL into C, the overall KINSOL organization has been changed considerably. One key
feature of the KINSOL organization is that a separate module devoted to vector operations was created. This module
facilitated extension to multiprosessor environments with minimal impact on the rest of the solver. The vector module
design is shared across the SUNDIALS suite. This N_Vector module is written in terms of abstract vector operations
with the actual routines attached by a particular implementation (such as serial or parallel) of N_Vector. This abstrac-
tion allows writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which
can be user-supplied), as well as allowing more than one N_Vector module linked into an executable file. SUNDIALS
(and thus KINSOL) is supplied with serial, MPI-parallel, OpenMP and Pthreads thread-parallel N_Vector implemen-
tations, as well as multiple N_Vector implementations designed to leverage GPU architectures (see Chapter §6 for
further details).

There are several motivations for choosing the C language for KINSOL. First, a general movement away from Fortran
and toward C in scientific computing was apparent. Second, the pointer, structure, and dynamic memory allocation
features in C are extremely useful in software of this complexity, with the great variety of method options offered.
Finally, we prefer C over C++ for KINSOL because of the wider availability of C compilers, the potentially greater
efficiency of C, and the greater ease of interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

1.2.1 Changes in v6.5.1

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

1.2.2 Changes in v6.5.0

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added the functions KINGetJac () and KINGetJacNumIters () to assist in debugging simulations utilizing a matrix-
based linear solver.

Added support for the SYCL backend with RAJA 2022.x.y.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

2 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

1.2.3 Changes in v6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.2.4 Changes in v6.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections SUNMatrix.Ginkgo and §8.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.10, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

1.2.5 Changes in v6.3.0

Added the function KINGetUserData () to retrieve the user data pointer provided to KINSetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.2.6 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated KINSetInfoFile(), KINSetDebugFile(), SUNNonlinSolSetPrintLevel_Newton(), SUN-
NonlinSolSetInfoFile_Newton(), SUNNonlinSolSetPrintLevel_FixedPoint(), SUNNonlinSolSet-
InfoFile_FixedPoint(), SUNLinSolSetInfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLin-
SolSetInfoFile_SPGMR(), SUNLinSolSetPrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(),
SUNLinSolSetPrintLevel SPFGMR(), SUNLinSolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_SPT-
FQMR(), SUNLinSolSetInfoFile_SPBCGS(), SUNLinSolSetPrintLevel_SPBCGS() it is recommended to use
the SUNLogger API instead. The SUNLinSolSetInfoFile_** and SUNNonlinSolSetInfoFile_%* family of
functions are now enabled by setting the CMake option SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

1.2. Changes from previous versions 3

https://ginkgo-project.github.io/
https://kokkos.org/
https://kokkos.org/

User Documentation for KINSOL, v6.5.1

Added the function KINPrintAllStats () to output all of the nonlinear solver, linear solver, and other statistics in one
call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value output files.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

1.2.7 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.2.8 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.2.9 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

4 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAllReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials: :hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewliithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

1.2. Changes from previous versions 5

https://github.com/LLNL/Caliper

User Documentation for KINSOL, v6.5.1

KINSOL

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1 SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1 SUNLinSol_SPBCGSSetMaxl1 ()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()

SUNSPFGMRSetMaxRestarts
SUNSPGMR

SUNLinSol_SPFGMRSetMaxRestarts()
SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType ()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUNMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

New orthogonalization methods were added for use within the KINSOL Anderson acceleration routine. See §2.13 and
KINSetOrthAA() for more details.

The KINSOL Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details using
the SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

6 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS
CLASSICAL_GS
ATimesFn
PSetupFn
PSolveFn
DlsMat
DENSE_COL
DENSE_ELEM
BAND_COL
BAND_COL_ELEM
BAND_ELEM

SUN_MODIFIED_GS
SUN_CLASSICAL_GS
SUNATimesFn
SUNPSetupFn
SUNPSolveFn
SUND1sMat
SUNDLS_DENSE_COL
SUNDLS_DENSE_ELEM
SUNDLS_BAND_COL
SUNDLS_BAND_COL_ELEM
SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):

Deprecated Name New Name
KINDlsSetLinearSolver KINSetLinearSolver
KINDlsSetJacFn KINSetJacFn
KIND1sGetWorkSpace KINGetLinWorkSpace
KIND1sGetNumJacEvals KINGetNumJacEvals
KIND1sGetNumFuncEvals KINGetNumLinFuncEvals
KINDlsGetLastFlag KINGetLastLinFlag
KINDlsGetReturnFlagName KINGetLinReturnFlagName
KINSpilsSetLinearSolver KINSetLinearSolver
KINSpilsSetPreconditioner KINSetPreconditioner
KINSpilsSetJacTimesVecFn KINSetJacTimesVecFn
KINSpilsGetWorkSpace KINGetLinWorkSpace
KINSpilsGetNumPrecEvals KINGetNumPrecEvals
KINSpilsGetNumPrecSolves KINGetNumPrecSolves
KINSpilsGetNumLinIters KINGetNumLinIters
KINSpilsGetNumConvFails KINGetNumLinConvFails
KINSpilsGetNum]timesEvals KINGetNumJtimesEvals
KINSpilsGetNumFuncEvals KINGetNumLinFuncEvals
KINSpilsGetLastFlag KINGetLastLinFlag
KINSpilsGetReturnFlagName KINGetLinReturnFlagName
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS

continues on next page

1.2. Changes from previous versions

User Documentation for KINSOL, v6.5.1

Table 1.1 — continued from previous page

Deprecated Name

New Name

DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1sMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS

QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat
DlsMat_NewBandMat

SUNDlsMat_NewDenseMat
SUND1lsMat_NewBandMat

DestroyMat SUNDlsMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1sMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1sMat_PrintMat
newDenselMat SUND1lsMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1sMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

8 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

1.2.10 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel one API Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate that the next
call to SUN1inSolSolve will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

New KINSOL options have been added to apply a constant damping in the fixed point and Picard iterations (see KIN-
SetDamping), to delay the start of Anderson acceleration with the fixed point and Picard iterations (see KINSetDe-
layAA), and to return the newest solution with the fixed point iteration (see KINSetReturnNewest).

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the Picard iteration where the value of KINSetMaxSetupCalls would be ignored.

1.2.11 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel one API) compiler. See §6.12 for more details. This module is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.

1.2.12 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.2. Changes from previous versions 9

User Documentation for KINSOL, v6.5.1

1.2.13 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA N_Vector implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer operation, and that the pointer returned by N_VGetDeviceArrayPointer is a valid CUDA device
pointer.

1.2.14 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.2.15 Changes in v5.4.0

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs such
as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA modules that
accept a SUNMemoryHelper object. Refer to §4.6.1, §6.10, §6.13, and §9 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.2.16 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

10 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

Added the optional function KINSetJacTimesVecSysFn to specify an alternative system function for computing
Jacobian-vector products with the internal difference quotient approximation.

1.2.17 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implementation
from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has been updated
to use this matrix, therefore, users of this module will need to update their code. These modules are still considered to
be experimental, thus they are subject to breaking changes even in minor releases.

1.2.18 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file pointers that
are useful when using the Fortran 2003 interfaces.

Added support for constant damping when using Anderson acceleration. See §2 and the description of the KINSet-
DampingAA function for more details.

1.2.19 Changes in v5.0.0

1.2.19.1 Build system changes

¢ Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as
SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to
the BLAS library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_-
LIBRARIES when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.

1.2. Changes from previous versions 11

User Documentation for KINSOL, v6.5.1

1.2.19.2 NVECTOR module changes

* Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
be set. Additionally, the function N_VCopyOps(w, v) has been added to copy the operation function pointers
between vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.1 for more details.

* Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have been cre-
ated to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accom-
panied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more details.

* One new required vector operation and ten new optional vector operations have been added to the N_Vector APL
The new required operation, N_VGetLength, returns the global length of an N_Vector. The optional operations
have been added to support the new NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCom-
municator must be implemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR,
but is not used outside of this context. The remaining nine operations are optional local reduction operations
intended to eliminate unnecessary latency when performing vector reduction operations (norms, etc.) on dis-
tributed memory systems. The optional local reduction vector operations are N_VDotProdLocal, N_VMaxNorm-
Local, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal, N_VWSqrSumMaskLocal, N_VInvTestLocal,
N_VConstrMaskLocal, and N_VMinQuotientLocal. If an N_Vector implementation defines any of the local
operations as NULL, then the NVECTOR_MPIMANYVECTOR will call standard N_Vector operations to complete the
computation. See §6.2.4 for more details.

* An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

e The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_RAJA
implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundials_-
nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users should use
the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules
to replace the functionality. The necessary changes are minimal and should require few code modifications.
See the programs in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the
NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

* Fixed a memory leak in the NVECTOR_PETSC module clone function.

* Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

* Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10.1 for more details.

* Added new Fortran 2003 interfaces for most N_Vector modules. See Chapter §6 for more details on how to use
the interfaces.

¢ Added three new N_Vector utility functions, FN_VGetVecAtIndexVectorArray, FN_VSetVecAtIndexVec-
torArray, and FN_VNewVectorArray, for working with N_Vector arrays when using the Fortran 2003 inter-
faces. See §6.1.1 for more details.

12

Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

1.2.19.3 SUNMatrix module changes

* Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMatNewEmpty
allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the SUNMatrix API by ensuring only required operations need
to be set. Additionally, the function SUNMatCopyOps(A, B) has been added to copy the operation function
pointers between matrix objects. When used in clone routines for custom matrix objects these functions also
will ease the introduction of any new optional operations to the SUNMatrix API by ensuring all operations are
copied when cloning objects. See §7.1 for more details.

* A new operation, SUNMatMatvecSetup, was added to the SUNMatrix API to perform any setup necessary for
computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
ops structure member, matvecsetup, to NULL. See §7.2 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indiciating success/failure may return different values than previously. See §7.2.1 for more
details.

* A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

* Added new Fortran 2003 interfaces for most SUNMatrix modules. See Chapter §7 for more details on how to
use the interfaces.

1.2.19.4 SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-
NewEmpty allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNLinearSolver API by ensuring
only required operations need to be set. See §8.1.8 for more details.

e The return type of the SUNLinearSolver API function SUNLinSolLastFlag has changed from long int
to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

¢ Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID, that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

* The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

* A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

* Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems
on NVIDIA GPUs. See §8.17 for more details.

¢ Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic, SUNLin-
Sol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the underlying KLU solver
structures. See §8.5.1 for more details.

* Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See Chapter §8 for more details on
how to use the interfaces.

1.2. Changes from previous versions 13

User Documentation for KINSOL, v6.5.1

1.2.19.5 KINSOL changes

* Fixed a bug in the KINSOL linear solver interface where the auxiliary scalar sJpnorm was not computed when
necessary with the Picard iteration and the auxiliary scalar sFdotJp was unnecessarily computed in some cases.

» The KINLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

¢ Added a Fortran 2003 interface to KINSOL. See §4.5 for more details.

1.2.20 Changes in v4.1.0

An additional N_Vector implementation was added for the TPetra vector from the Trilinos library to facilitate interop-
erability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file kin_impl.h is no longer installed. This means users who are directly manipulating
the KINMem structure will need to update their code to use KINSOL’s public API.

Python is no longer required to run make test and make test_install.

1.2.21 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the KINSOL library, 1ibsundials_kinsol.

1.2.22 Changes in v4.0.1

No changes were made in this release.

1.2.23 Changes in v4.0.0

KINSOL’s previous direct and iterative linear solver interfaces, KINDIs and KINSpils, have been merged into a single
unified linear solver interface, KINLs, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how KINLs utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in Chapter §8. All KINSOL example programs and the standalone linear solver examples
have been updated to use the unified linear solver interface.

The unified interface for the new KINLs module is very similar to the previous KINDIs and KINSpils interfaces. To
minimize challenges in user migration to the new names, the previous C and Fortran routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. Additionally,
we note that Fortran users, however, may need to enlarge their iout array of optional integer outputs, and update the
indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names
are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense,

14 Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUN-
LinSol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges in
user migration to the new names, the previous routine names may still be used; these will be deprecated in future re-
leases, so we recommend that users migrate to the new names soon. All KINSOL example programs and the standalone
linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an N_Vector
(see Chapter §6 for more details). The new operations are intended to increase data reuse in vector operations, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with ac-
celerators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_ViirmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an N_Vector implementation defines any of these operations as NULL, then
standard N_Vector operations will automatically be called as necessary to complete the computation. Multiple updates
to NVECTOR_CUDA were made:

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.

e Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

* Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
¢ Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPENNM-
PDEV. See §6.15 for more details.

1.2.24 Changes in v3.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can modified.

1.2. Changes from previous versions 15

User Documentation for KINSOL, v6.5.1

1.2.25 Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__. Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI
rank when using a GPU system. The vectors assume one GPU device per MPI rank. Changed the name of the RAJA
N_Vector library to libsundials_nveccudaraja.lib from libsundials_nvecraja.lib to better reflect that
we only support CUDA as a backend for RAJA currently. Several changes were made to the build system:

CMake 3.1.3 is now the minimum required CMake version.

Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MP1 is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.2.26 Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally
handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is
still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~.J manually (with zero
entries if needed).

Changed the LICENSE install path to instdir/include/sundials.

16

Chapter 1. Introduction

User Documentation for KINSOL, v6.5.1

1.2.27 Changes in v3.1.1

The changes in this minor release include the following:

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple
times then the solver memory was reallocated (without being freed).

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.

Fixed a minor bug in KINPrintInfo where a case was missing for KIN_REPTD_SYSFUNC_ERR leading to an
undefined info message.

Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.

Fixed an indexing bug in the CUDA N_Vector implementation of N_VWrmsNormMask and revised the RAJA
N_Vector implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinear-
Solver module (e.g., iterative linear solvers or fixed pointer solver).

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.2.28 Changes in v3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.2.29 Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in the interfacing of custom
linear solvers and interoperability with linear solver libraries. Specific changes include:

Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented API.

Added example problems demonstrating use of generic SUNMATRIX modules.

Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS native dense,
SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPT-
FQMR, SPFGMR, and PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented APL

Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

1.2. Changes from previous versions 17

User Documentation for KINSOL, v6.5.1

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

» Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to th web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FOO_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was done to correct the fcmix name translation for FKIN_SPFGMR.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

18 Chapter 1. Introduction

https://software.llnl.gov/RAJA/
https://xsdk.info

User Documentation for KINSOL, v6.5.1

1.2.30 Changes in v2.9.0

Two additional N_Vector implementations were added — one for Hypre (parallel) vectors, and one for PETSc vectors.
These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID, that returns the N_Vector module name.

The Picard iteration return was chanegd to always return the newest iterate upon success. A minor bug in the line search
was fixed to prevent an infinite loop when the beta condition fails and lamba is below the minimum size.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner ’free’ functions.

Corrections were made to three Fortran interface functions. The Anderson acceleration scheme was enhanced by use
of QR updating.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into two pieces. FKIN-
MALLOC remains for backward compatibility, but documentation for it has been remov