next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000085231 seconds elapsed
 -- 0.000849411 seconds elapsed
 -- 0.000237246 seconds elapsed
 -- 0.000081927 seconds elapsed
 -- 0.00073287 seconds elapsed
 -- 0.000213567 seconds elapsed
 -- 0.000064518 seconds elapsed
 -- 0.000059589 seconds elapsed
 -- 0.000169245 seconds elapsed
 -- 0.000085277 seconds elapsed
 -- 0.000684493 seconds elapsed
 -- 0.000204202 seconds elapsed
 -- 0.000083566 seconds elapsed
 -- 0.000647729 seconds elapsed
 -- 0.000202634 seconds elapsed
 -- 0.000100897 seconds elapsed
 -- 0.000594918 seconds elapsed
 -- 0.000194708 seconds elapsed
 -- 0.000083876 seconds elapsed
 -- 0.000711432 seconds elapsed
 -- 0.00021074 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000081119 seconds elapsed
 -- 0.000769883 seconds elapsed
 -- 0.000222349 seconds elapsed
 -- 0.000083557 seconds elapsed
 -- 0.000708554 seconds elapsed
 -- 0.000199171 seconds elapsed
 -- 0.000076752 seconds elapsed
 -- 0.000640613 seconds elapsed
 -- 0.000199054 seconds elapsed
 -- 0.000078871 seconds elapsed
 -- 0.000625502 seconds elapsed
 -- 0.000200626 seconds elapsed
 -- 0.000102466 seconds elapsed
 -- 0.000672302 seconds elapsed
 -- 0.000192969 seconds elapsed
 -- 0.000077207 seconds elapsed
 -- 0.00065875 seconds elapsed
 -- 0.000198272 seconds elapsed
 -- 0.000092492 seconds elapsed
 -- 0.000794264 seconds elapsed
 -- 0.00021072 seconds elapsed
 -- 0.000080672 seconds elapsed
 -- 0.000714308 seconds elapsed
 -- 0.000204993 seconds elapsed
 -- 0.000080347 seconds elapsed
 -- 0.000657942 seconds elapsed
 -- 0.000197585 seconds elapsed
 -- 0.000080465 seconds elapsed
 -- 0.000618219 seconds elapsed
 -- 0.000239183 seconds elapsed
 -- 0.000082722 seconds elapsed
 -- 0.000624973 seconds elapsed
 -- 0.000203385 seconds elapsed
 -- 0.000080617 seconds elapsed
 -- 0.000676388 seconds elapsed
 -- 0.000204826 seconds elapsed
 -- 0.000086176 seconds elapsed
 -- 0.0009679 seconds elapsed
 -- 0.000328983 seconds elapsed
 -- 0.000080893 seconds elapsed
 -- 0.00095234 seconds elapsed
 -- 0.000325579 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.