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This document provides a high-level overview of Wild Magic 5 and its similarities and differences compared
to Wild Magic 4. This is not intended to be a comprehensive description; consider it a brain dump of what
I was thinking for the various files and subsystems. Your best bet for understanding how to use Wild Magic
5 is to browse the sample applications and see the engine in action. If you have used Wild Magic 4, you can
compare those samples with their rewrites in Wild Magic 5.

1 Introduction

1.1 Licensing

The versions of Wild Magic prior to 4.10 used the LGPL Open Source license. The license was changed to
the Boost License for Wild Magic 4.10. Wild Magic 5 also uses the Boost License.

1.2 Naming Conventions

Based on user feedback, the Microsoft-like Hungarian notation was removed. The notation is now simpler,
choosing instead to use the prefixes m for nonstatic class data members, ms for static class data members,
g for nonstatic global data, and gs for static global data. Modern compilers and tools are quite good at
allowing you to determine the type of identifiers, usually via tool tips with a mouse-over of the identifiers,
so there is no reason to embed the type information in the name. Local identifiers within functions also no
longer have embedded type information. The source code is easier to read.

1.3 Source Code Organization

The code has been factored and reorganized.

The WM4 LibFoundation library was factored into two WM5 libraries: LibCore and LibMathematics. Lib-
Core has basic system support, including assertion handling, data types for tuples (1D arrays) and tables
(2D arrays), file and buffer input-output, memory management and smart pointers, object-oriented support
(base class Object, file and buffer input-output, run-time type information, streaming, and initialization-
termination semantics), mutexes and threads (the threading is not yet implemented), and time measurement.

LibMathematics contains just about everything else that lived in LibFoundation. Most of that code remains
the same as in WM4 (except for the naming conventions).

The WM4 LibGraphics library contained a platform-independent engine for graphics. An abstract class
Renderer lived in this library. The WM4 LibRenderers folder contained projects with Renderer-derived
classes for each graphics API of interest: Dx9Renderer (DirectX 9 for Microsoft Windows); OpenGLRenderer
with flavors WglRenderer (Microsoft Windows), AglRenderer (Macintosh OS X), and GlxRenderer (Linux
using X Windows); and SoftRenderer with flavors WinSoftRenderer (Microsoft Windows), MacSoftRenderer
(Macintosh OS X), and XSoftRenderer (Linux using X Windows). The main drawback to this approach
is that Renderer contained a large number of virtual functions. In an application with a large number of
calls to the virtual functions, there is a performance hit due to those calls. Specifically, there are many data
cache misses due to the lookup of the function pointers in the virtual function table (the tables are global
data). WM5 has a concrete class Renderer that does not have virtual functions. The class is implemented
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for each graphics API. The code for these APIs is also part of WM5 LibGraphics. The selection of the API
is controlled via build configurations.

The WM4 LibApplications library that provides a platform-independent application layer did not change
much in WM5. The design of the application layer is such that each platform (Microsoft Windows, Macintosh
OS X, Linux) implements an entry point that is called by code in class Application. The entry point
implementation and any event handling is, of course, specific to the platform. The application library is
mainly for the convenience of supporting Wild Magic sample applications. Although it can be used in
shipping applications, it was never intended for use this way. I expected that users would roll their own
layer.

1.4 LIB Header Files

Each of the libraries LibCore, LibMathematics, LibGraphics, LibPhysics, and LibImagics has a corre-
sponding header file: Wm5CoreLIB.h, Wm5MathematicsLIB.h, Wm5GraphicsLIB.h, Wm5PhysicsLIB.h, and
Wm5ImagicsLIB.h. These header files contain preprocessor commands that control the compilation of the
libraries. Users are encouraged to modify these files to suit their own needs.

1.4.1 Wm5CoreLIB.h

The file Wm5CoreLIB.h contains preprocessor commands to expose various features that are dependent on
the development platform (Microsoft Windows, Macintosh OS X, Linux). For example, one of the the flags
WM5 LITTLE ENDIAN or WM5 BIG ENDIAN is exposed depending on the byte order required by the CPU. The
only tested platform that has a big-endian ordering is the Macintosh PowerPC G4/G5. The other tested
platforms have little-endian ordering, including the Intel Macintosh.

The header file contains declarations of some standard integer types when compiling using Microsoft Visual
Studio 2008. I am patiently waiting for consistent cross-platform support for stdint.h.

Various headers from the C standard library and from the C++ standard library are included for convenience.
Although generally you want to structure the header inclusions to obtain minimal time for compilation,
nearly all modern compilers provide support for precompiled headers. Having a large number of includes
in Wm5CoreLIB.h, a file that is indirectly included in all source files, will lead to a slow compile without
precompiled headers. However, the precompiled header builds are quite fast.

The symbols public internal, protected internal, and private internal are defined to be the keywords
public, protected, and private, respectively. This allows me to use the * internal symbols to designate
sections within class declarations that are intended for my internal use. For example, sometimes a class
needs a subsystem to support the engine design, and that subsystem must have public functions that are
called within the engine. Such functions are tagged as public internal to let the users know that I do not
intend for these to be called explicitly by applications.

Within Microsoft Visual Studio 2008, the newly defined symbols may be assigned colors for syntax high-
lighting. To change the color, edit the following file

C:/Program Files/Microsoft Visual Studio 9.0/Common7/IDE/usertype.dat

Add each identifier you want highlighted on a line by itself. My file contains
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public_internal

protected_internal

private_internal

new0

new1

new2

new3

new4

delete0

delete1

delete2

delete3

delete4

assertion

The additional symbols in this file for syntax highlighting are described later in this document. In Visual
Studio, select the menu item

Tools | Options ...

In the Options dialog that appears, expand the Environment item and select Fonts and Colors. On the right
there is a control named “Display items”; in the drop-down list, select “User Keywords”. You can change
the color using the controls named “Item foreground” and “Item background”. I selected purple for the
foreground color, as shown in the next figure.

The macro WM5 UNUSED(variable) is used to avoid compiler warnings iabout unused variables when com-
piling Release configurations. For example,

bool successful = DoSomeOperation();
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assert(successful);

will compile without warnings in Debug configurations. However, the compiler generates a warning in Release
configurations that successful is not used. The reason, of course, is that the assert statement has no
generated code in Release configurations, so successful is not used. To avoid the warning, use

bool successful = DoSomeOperation();

assert(successful);

WM5_UNUSED(successful);

The header file contains three additional blocks, all enabled in Debug configurations. The first is related to
run-time assertions, the second is related the WM5 memory management system that supports testing for
memory leaks, and the third is related to file and buffer input-output. The various preprocessor commands
in these blocks are described later in this document.

1.4.2 Wm5MathematicsLIB.h

Currently, the only preprocessor control in Wm5MathematicsLIB.h is related to handling of exact rational
arithmetic. I added a patch to WM4.10 so that subnormal (denormal) floating-point numbers are handled
correctly by the class Rational constructors and converters between floating-point and Rational. The WM5
code supports conversion of subnormal numbers. You can enable the engine to assert when an attempt is
made to convert a NaN (Not a Number) to a Rational.

1.4.3 Wm5GraphicsLIB.h

A few controls are allowed in Wm5GraphicsLIB.h. When reorienting the camera by a call to Camera::SetAxes,
either explicitly or indirectly with a call to Camera::SetFrame, the input axis vectors might be computed
by the application in such a manner that, over time, numerical round-off errors cause the vectors not to be a
right-handed orthonormal set. The SetAxis function uses Gram-Schmidt orthonormalization to ensure that
the vectors do form a right-handed orthonormal set. You can enable WM5 VALIDATE CAMERA FRAME ONCE to
trap the first time the vectors appear to fail the test for right-handed orthonormality. I have found this to
be a useful feature for trapping when the initial settings for the application camera, mCamera, are applied.
In most cases, the user has incorrectly specified the vectors.

The shader system supports only a few shader models (profiles). To be specific, currently only four profiles
are supported, but also a none value is used to flag invalid profiles. The total number, including the none
profile is five. For vertex shaders, the supported profiles are vs 1 1, vs 2 0, and vs 3 0 for DirectX 9 and
arbvp1 for OpenGL. For pixel shaders, the supported profiles are ps 1 1, ps 2 0, and ps 3 0 for DirectX 9
and arbfp1 for OpenGL. Sometimes you might need advanced OpenGL support for an effect, but the Cg
compiler still includes the ARB versions of the profile names in the compiled code. For example, the sample
graphics application VertexTextures requires a Cg command-line parameter -profile vp40, but the Cg
compiler still displays the first line of the compiled file as !!ARBVP1.0. The WM5 shader system bundles
together the shader programs for the profiles into a single object of class Shader. This class has arrays whose
number of elements is 5, which is stored as Shader::MAX PROFILES.

You can modify WM5 to include more profiles. However, if you use the WM5 streaming system, the streamed
output implicitly depends on Shader::MAX PROFILES. If you were to increase the maximum number of
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profiles, and then load a file streamed with the previous maximum number, there is a mismatch and the file
load will ungracefully fail (all data loaded thereafter is misaligned). To trap this problem when loading files,
you can enable WM5 ASSERT ON CHANGED MAX PROFILES.

In the Renderer::Draw(const Visual*, const VisualEffectInstance*) function, the global render state
is reset to the defaults after each pass of the effect. Given that every draw function is required to set the
all the global state, it is not necessary to reset the state. Thus, the reset code is not compiled by default.
During development and testing, I had some problems when not resetting the state, so I added a preprocessor
symbol to allow me to toggle the reset code: WM5 RESET STATE AFTER DRAW. Just in case problems show up
later, I kept the preprocessor symbol. You can enable this if you prefer by uncommenting the define in
Wm5GraphicsLIB.h.

Sometimes during application development, you might not see a rendered object when you were expecting
one. A simple test to determine whether any pixels were actually drawn involves queries supported by the
graphics APIs. The Renderer::DrawPrimitive calls in Wm5Dx9Renderer.cpp and Wm5OpenGLRenderer.cpp

have conditionally compiled blocks of code that, when enabled, perform the queries. To enable these,
uncomment the WM5 QUERY PIXEL COUNT symbol in Wm5GraphicsLIB.h. Recompile the graphics library and
your application, and then set a breakpoint in DrawPrimitive on the lines with WM5 END QUERY. When you
reach the breakpoint, step over the line of code and look at the value of numPixelsDrawn. If it is zero, no
pixels were drawn for the current primitive.

When using the OpenGL renderer, I have code to draw text either using display lists or using precomputed
bitmap fonts (see Wm5GLVerdanaS16B0I0.cpp). The default is to use display lists, but you can change this
by commenting out WM5 USE TEXT DISPLAY LIST in Wm5GraphicsLIB.h.

Wm5GraphicsLIB.h contains the symbol WM5 USE OPENGL2 NORMAL ATTRIBUTES that is defined for Microsoft
Windows and Linux. It is not defined for Macintosh OS X. I had problems with incorrent renderings
on the Macintosh when the effects use lighting and normals, so I had to fall back to using the conven-
tional glNormalPointer for setting the vertex data source for normals. As it turns out, the problem is
that I have been using OpenGL extensions for shader support, and those extensions were created before
OpenGL 2.0 was released. The assembly for the compiled shaders contains vertex.normal, which is for
the conventional way of accessing the vertex normals. When I use glEnableVertexAttribArrayARB and
glVertexAttribPointerARB to set the data source for vertex normals, the NVIDIA drivers for Microsoft
Windows and for Fedora Linux hook up the normals so that vertex.normal refers to those normals. How-
ever, the NVIDIA drivers on the Macintosh do not hook these up, so the vertex shader is unable to access
the normals.

I added the aforementioned preprocessor symbol as a hack to make the shaders work on all platforms. Alter-
natively, on the Macintosh you can edit the assembly code and replace vertex.normal by the corresponding
generic attribute accessor (not my first choice). I am in the process of updating the OpenGL renderer so
that it uses the core OpenGL 2.0 (and later) shader system. However, this means that the shaders must
be written in GLSL, not in Cg. The end result of the update is EmeraldGL, and will be an OpenGL-only
graphics system. I might consider implementing a DirectX-only system (EmeraldDX) that uses DirectX 11.

The last preprocessor symbol in Wm5GraphicsLIB.h is WM5 PDR DEBUG, which is enabled by default for the
DirectX 9 renderer. This exposes assertions that are triggered whenever the DirectX calls fail.
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1.4.4 Wm5PhysicsLIB.h

The only preprocessor symbols in Wm5PhysicsLIB.h are used for debugging the LCP code. There is no
reason to enable these except if you want to determine whether the LCP code is working correctly. The
LCP code was part of Game Physics, 1st edition, but it was intended to be pedagogic and illustrate the
Lemke algorithm (which looks a lot like a basic linear programming solver and similar to linear system
solving). This code is not what people use in physics engines. (Someday I will get around to implementing
a velocity-based iterative algorithm . . . )

1.4.5 Wm5ImagicsLIB.h

No preprocessor symbols are defined in Wm5ImagicsLIB.h. This library has not been worked on for many
years, but remains useful (to me) for rapid prototyping of image analysis projects. It needs some major
updating and expansion.

1.5 No DLL Configurations

For years I have provided build configurations for both static and dynamic libraries. The Microsoft Windows
annoyance of having to use declspec(dllexport) and declspec(dllimport) so that classes are properly
exported or imported has been a pain. The WM4 libraries had LIB files containing preprocessor symbols as
shown next:

#ifdef WM4_FOUNDATION_DLL_EXPORT

// For the DLL library.

#define WM4_FOUNDATION_ITEM __declspec(dllexport)

#else

#ifdef WM4_FOUNDATION_DLL_IMPORT

// For a client of the DLL library.

#define WM4_FOUNDATION_ITEM __declspec(dllimport)

#else

// For the static library.

#define WM4_FOUNDATION_ITEM

#endif

#endif

Each class is structured as

class WM4_FOUNDATION_ITEM MyClass { ... }

However, template classes with no explicit instantiation in the library could not use the WM4 FOUNDATION ITEM

macro. And various static class data members needed the macro per member. The separation between the
abstract Renderer class and its derived classes per graphics API required the virtual function members so
that the DLL configurations would link successfully.

Given the abundance of disk space, the usage I had in mind for Wild Magic libraries, the problems with
linking when attempting to remove virtual functions from the Renderer class, and the annoyance of the
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aforementioned macro handling, I decided to stop supporting DLLs. WM5 has only static debug and static
release configurations.

1.6 The WM4 Shader Programming and FX System

WM4 had a somewhat complicated approach to shader programming and effects, which made it sometimes
difficult to extend to shaders not already part of the engine (or part of the sample applications). The
problems with this approach are described next.

The abstraction of the drawing pass in WM4 is

renderer.Draw(geometry)
{

renderer.SetGlobalState(...); // alpha, cull, depth, ...
renderer.SetWorldTransformation(); // sets model-to-world (W), others computed later (WV, WVP)
renderer.EnableIBuffer(geometry); // enable the index buffer of geometry
for each effect of geometry do // multieffect drawing loop
{

renderer.ApplyEffect(effect);
{

for each pass of effect do // multipass drawing loop
{

pass.SetGlobalState();
pass.ConnectVShaderConstants(); // set sources for constants
pass.ConnectPShaderConstants(); // set sources for constants
pass.GetVProgram(); // loaded first time, cached in catalog for later times
pass.EnableVProgram();
pass.GetPProgram(); // loaded first time, cached in catalog for later times
pass.EnablePProgram();
for each vertex texture of pass do
{

pass.GetVTexture(); // loaded first time, cached in catalog for later times
pass.EnableVTexture();

}
for each pixel texture of pass do
{

pass.GetPTexture(); // loaded first time, cached in catalog for later times
pass.EnablePTexture();

}
pass.EnableVBuffer();
renderer.DrawPrimitive(geometry);
pass.DisableVBuffer();
pass.DisablePTextures();
pass.DisableVTextures();
pass.DisablePProgram();
pass.DisableVProgram();
pass.RestoreGlobalState();

}
}

}
DisableIBuffer();
RestoreWorldTransformation();
RestoreGlobalState();

}

The drawing supports multiple effects per geometric primitive and multiple passes per effect; it is not
necessary to have a double-loop sytem. WM5 has a single-loop system, iterating over the passes of a single
effect attached to the geometric primitive.

The renderer sets and restores global states (alpha, face culling, depth buffering, stencil buffering, polygon
offset, wireframe), but so does each pass. Given that each pass restores state, there is no need for the
renderer object itself to manage global state.
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The index buffer is invariant across all effects and passes, so it is enabled and disabled once only. However,
the vertex buffer is enabled and disabled per pass, which is not necessary. What WM4 does is create a
VRAM vertex buffer for the geometric primitive. It then maintains vertex buffers that match what the
vertex program requires for the passes, as determined during the first call to GetVProgram (when the vertex
program is loaded from disk and parsed). If the effect has multiple passes, a second (or later) pass involves
finding an already existing vertex buffer that has the required attributes. If none exists, a new VRAM vertex
buffer is created that has the required attributes. Thus, it is possible that multiple vertex buffers exist in
VRAM with data copied from the primary vertex buffer of the geometric primitive, which is a waste of
memory. An effect with multiple passes should be applied to a geometric primitive whose vertex buffer has
all the attributes necessary for all the passes (WM5 does this).

In effect, WM4 tried to assume responsibility for ensuring that the vertex buffers match what the vertex
program needs. If there is a mismatch between primary vertex buffer and what the vertex program needs,
WM4 creates a matching vertex buffer; however, the attributes generated by a mismatch have have no
chance of being initialized by the application programmer. In the WM4 sample applications, there are no
mismatches, so there is no penalty in wasted memory. But there is a penalty in having a vertex buffer
management system that is irrelevant. In the end, it is the application programmer’s responsibility for
ensuring that the vertex buffer has all that it needs to support an effect and that the outputs of a vertex
program match the inputs of a pixel program.

In WM4, class Shader represents a shader program and its associated storage for shader constants and for
textures. However, it was convenient to allow applications to specify their own data sources for the shader
constants (for ease of access). WM4 has shader constant classes that provide such storage; for example,
the class UserConstant. In the drawing pass, the functions Renderer::ConnectVShaderConstants and
Renderer::ConnectPShaderConstants set the data sources for the shaders. This allows an application to
change the data source for each drawing pass, an event that is highly unlikely (and never happens in WM4
sample applications). The redesign of the shader system for WM5 avoids this.

The function Renderer::GetVProgram is called during drawing to get access to the vertex program of the
effect pass. The first time a vertex program is requested, it is loaded from disk. The shaders were written
using NVIDIA’s Cg, and they were all compiled for Shader Model 2. The compiled assembly is still textual,
and is stored in files with extension wmsp. The WM4 engine contains a class Program and derived classes
VertexProgram (loads wmsp files with prefix v ) and PixelProgram (loads wmsp files with prefix p ). The
comments in the wmsp files are parsed to obtain information about the shader program, which effectively is
WM4’s attempt to have an FX run-time system.

A problem with this system is that the shader programs are constrained to contain special names for
some of the shader constants to support automatic updating of those constants during drawing. A class
RendererConstant provides a set of enumerations and corresponding names for common quantities that
change frequently, such as world-view-projection matrices, camera parameters, and light and material param-
eters. Class Renderer contains an array of functions corresponding to the enumerations in RendererConstant.
The function Renderer::SetRendererConstant determines which shader constants need to be updated (in
system memory). After such a call, Renderer::SetVProgramConstant or Renderer::SetPProgramConstant
are called so that the graphics API can update the constants (by copying to constant registers). These
Renderer calls are part of the Renderer::EnableVProgram and Renderer::EnablePProgram calls in the
drawing pass. WM5 provides a different mechanism for automatic constant updating that does not have
constraints on the shader constant names.

Another problem with the Program loading and parsing is that it is not general. Often I would want to
support a new effect but the Cg programs used features not supported by the parser of Program. That meant
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modifying Program as needed. WM5 avoids this system and allows you to compile shaders to a binary format
that contains the textual program string but also contains information about the shader. That is, the loading
and parsing is now part of a tool. The output files of the tool are ready to load by WM5, so there is no error
checking that needs to be performed at application run time.

In WM4, when Renderer::GetVProgram is called the first time for a vertex program, and the program loads
correctly, it is stored in a cache implemented in the Catalog class. This caching system is overly complicated.
In WM5, caching is the responsibility of the application programmer, because the programmer knows best
how the objects will be used and shared.

When effects use vertex or pixel textures, they are loaded the first time they are encountered by calls
to ShaderEffect::GetVTexture and ShaderEffect::GetPTexture. The mechanism is similar to that of
GetVProgram and GetPProgram–the first time a texture is encountered, it is loaded from disk and cached
in a catalog. Later requests look in the catalog first to find the textures and, if found, use them instead of
loading a new copy from disk.

Although manageable, the drawing system of WM4 turned out to be more complicated than is necessary,
and it was not general enough to support many advanced special effects without having to modify the engine.

1.7 The WM5 Shader Programming and FX System

The abstraction of the drawing pass in WM5 is described next. What used to be the Geometry class is now
Visual, which I thought was a better name that allows me to add Audial (for 3D sound) at a later date.

Some other major design changes were made. DirectX 9 has the concept of a vertex format that describes
a vertex stored in a vertex buffer. OpenGL does not encapsulate this in a simple manner. WM5 has a new
class called VertexFormat that implements the idea. The class VertexBuffer still represents a vertex buffer
but, of course, with changes. Reading and writing vertex buffer information requires knowing a vertex buffer
and a vertex format. The read/write is supported by the class VertexBufferAccessor.

The WM5 class VisualEffect is the natural successor to WM4’s ShaderEffect, except that VisualEffect
represents a vertex shader and pixel shader pair but without specific data for the shader constants and
textures. A single VisualEffect object can have multiple instances, each instance having data. These
instances are represented by class VisualEffectInstance. For example, you can create a texture visual
effect with user-specified sampler parameters. If you want this effect for each of two different texture images,
you create two visual effect instances.

A Visual object has attached a single pair of VisualEffect and VisualEffectInstance. Each object of
type VisualEffectInstance manages multiple passes for the drawing, each pass of class VisualPass. The
VisualPass class contains global render state objects (alpha, face culling, depth buffering, polygon offset,
stencil buffering, and wireframe), a vertex shader, and a pixel shader.

A class ShaderParameters represents the shader constants and textures used VisualEffectInstance, one
such object for the vertex shader and one such object for the pixel shader. The shader constants are encap-
sulated by a system whose base class is ShaderFloat. Many derived classes are provided for common shader
constants, such as world-view-projection matrices, camera parameters, and light and material parameters.
This system replaces WM4’s RendererConstant system for automatic updating of shader constants.

The drawing pass is abstractly
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renderer.Draw(visual, visualEffectInstance)
{

renderer.Enable(visual.vertexBuffer);
renderer.Enable(visual.vertexFormat);
renderer.Enable(visual.indexBuffer); // if it has such a buffer
for each visualPass of visualEffectInstance do
{

visualPass.vertexShaderParameters.UpdateConstants(visual, renderer.camera);
visualPass.pixelShaderParameters.UpdateConstants(visual, renderer.camera);
visualPass.SetGlobalState(); // alpha, cull, depth, ...
renderer.Enable(visualPass.vertexShader, visualPass.vertexShaderParameters);
renderer.Enable(visualPass.pixelShader, visualPass.pixelShaderParameters);
renderer.DrawPrimitive(visual);
renderer.Disable(visualPass.pixelShader, visualPass.pixelShaderParameters);
renderer.Disable(visualPass.vertexShader, visualPass.vertexShaderParameters);
visualPass.RestoreGlobalState();

}
renderer.Disable(visual.indexBuffer);
renderer.Disable(visual.vertexFormat);
renderer.Disable(visual.vertexBuffer);

}

At a high level, the drawing is similar to that of WM4. But as mentioned in the section describing the WM4
drawing, the vertex buffer is enabled and disabled once outside the loop over passes. The WM4 setting
of sources for shader constants was eliminated. Instead, the ShaderFloat objects provide storage and the
UpdateConstants performs the automatic updates of the constants.

All caching of effects, textures, vertex buffers, vertex formats, and index buffers is the responsibility of the
application programmer. It is simple enough to use the smart-pointer system for the management rather
than a complicated cataloging system.

As mentioned in the previous section, WM5 has a tool for compiling Cg Shaders to a binary format that can
be loaded directly by the engine. This tool is named WmfxCompiler (in the WildMagic5/Tools subfolder).

Local effects are those applied to a single geometric primitive; for example, basic texturing and lighting.
Global effects are typically more complicated and are applied to scene graphs; for example, planar shadows
and planar reflections. WM5 has implementations of quite a few local effects, but has only planar shadows
and planar reflections as examples of global effects. The sample applications have additional global effects
that are implemented at the application level rather than as classes.

1.8 Design Change Regarding Lights and Materials

WM4 had classes Light and Material that provided the ability to attach Light objects to a scene graph
node. Each light attached to a node was assumed to illuminate any objects in the subtree rooted at the
node. To support this automatically, WM4 internally generated a shader effect (class LightingEffect) that
was used for lighting. If an application attached a ShaderEffect to a leaf node of that subtree, a multieffect
drawing occurred. The LightingEffect was executed first for the geometry, and the ShaderEffect was
executed second with a default alpha blend applied to combine it with the lighting. This approach still
has the flavor of the fixed-function pipeline. Moreover, it was not a good idea (based on technical support
requests from users having problems working with the lighting). It is possible to roll your own lighting effects
without attaching lights to the scene, but then you have to make Renderer calls so that the renderer knows
about the lights. Very cumbersome and nonintuitive.

WM5 eliminates this system. The Light class still exists, but it is only a container for light proper-
ties (light type, colors, attenuation, and so on). You cannot attach a Light to a scene directly. In-
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stead, you can create lighting-related shader constants via classes derived from ShaderFloat and include
them in the visual effect instances. See, for example, files of the form Wm5Light*Constant.{h,cpp} and
Wm5Material*Constant.{h,cpp} and local effects files of the form Wm5Light*Effect.{h,cpp}.

2 LibCore

The LibCore library contains some basic support that applications need. Some of this support is for conve-
nience during development. A summary of the files in this library is provided in this section. The subsection
titles are the names of the subfolders of the WildMagic5/LibCore folder.

2.1 Assert

C++ run-time libraries typically implement a macro called assert that has a single input which is a
Boolean expression. In debug configurations, the macro is expanded to platform-specific code that triggers
the assertion when the Boolean expression is false. Moreover, typically a breakpoint is generated so that the
debugger stops on that line of code for the programmer to diagnose the problem. For example,

float numerator = <some integer>;

float denominator = <some integer>;

assert(denominator != 0.0f);

float ratio = numerator/denominator;

This bare-bones approach is suitable most of the time, but other times it is useful to perform more actions
when an unexpected condition occurs. Moreover, it might be useful to have an assertion triggered when
running in release configurations.

The files Wm5Assert.* provide an alternate implementation for assertions, which at the moment is utilized
only on Microsoft Windows and Microsoft Visual Studio. The class Assert has a constructor whose first
input is the Boolean expression to be tested. The name of the file and line number within that file where the
assertion is triggered are also parameters. These support writing assertions to a logfile, identifying the file
and line number, but not triggering an interrupt on the assertion. These also support writing information
to a Microsoft Windows message box.

Yet another parameter of the constructor is a format string. Values to be printed via the format statement
may be provided to the constructor (note the use of the ellipsis in the constructor). This allows you to
specify more than just that the assertion failed. You can print as much information as you believe necessary
to help with debugging. A variadic macro named assertion is used to wrap the construction of Assert
objects; such a macro supports a variable number of arguments.

By default, the alternative assertion system is enabled for Microsoft Windows and Visual Studio when in a
debug configuration. The preprocessor flag controlling this is in Wm5CoreLIB.h. The system is enabled when
WM5 USE ASSERT is defined. If you want, you can expose the macros even in a release configuration. Notice
that there are three additional preprocessor symbols you can define. These control whether the assertion
information is written to a log file, to the output window of Visual Studio, and/or to a message box.

In my environment, I have assertion specified as a user keyword with syntax highlighting that shows the
keyword in purple. For details on highlighting user keywords, see Section 1.4.1.
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2.2 DataTypes

I implemented only two basic data types in the core library: Tuple and Table. These are templated classes
with two template parameters: one is the number of components of the tuple and one is the type of the
component. Only basic services are provided: construction, destruction, access to the array pointer, access
to components, assignment, and comparison (support for standard C++ library containers). The main use
of Tuple in the engine is as a base class for floating-point vectors Float1, Float2, Float3, and Float4. The
derived classes provided specialized constructors and assignment operators.

Class Table represents a 2-dimensional array of components and has three template parameters: one is
the number of rows of the table, one is the number of columns of the table, and one is the type of the
component. Only basic services are provided: construction, destruction, access to the array pointer, access
to components, access to rows and columns (as tuples), assignment, and comparison (support for standard
C++ library containers). The main use of Table in the engine is as a base class for floating-point matrices
Matrix2, Matrix3, and Matrix4.

I have tried to rely on the standard C++ library containers as much as possible, but I find my own minimum-
heap template class to be useful (for priority queue support with fast updates when neighbors change). I
have kept this template class, files Wm5MinHeap.*.

2.3 InputOutput

This folder contains implementation for handling of byte-order (endianness) and for file and buffer input-
output. It also contains a path system for locating files.

2.3.1 Endianness

Class Endian has code to test whether a processor is little endian or big endian. The class also has functions
for swapping data types with 2, 4, or 8 bytes per element. I used byte-swapping in WM4 extensively to allow
data files that could be loaded either on a little-endian or a big-endian machine. The data itself was always
stored in little-endian format, which meant that the PowerPC Macintosh had extra computational work to
do when loading.

2.3.2 File and Buffer Input-Output

My goal in WM5 was to provide file and buffer input-output that can be configured for the platforms in
such a manner as to avoid byte swapping. Classes BufferIO and FileIO are the implementations. The
constructors for these classes have a mode parameter that allows you to specify whether the object is for
reading data or for writing data. Moreover, the mode flags specify whether to read as is, to write as is, to
read and swap bytes, or to write and swap bytes. Additionally, I have mode flags for the default read/write
modes. In the engine, any time I use BufferIO or FileIO objects, I arrange for the mode parameter to be
defaulted itself to the default read/write modes. In this manner, if you want a global change in the engine,
say, to switch from read to read-and-swap, you need only edit Wm5BufferIO.h and Wm5FileIO.h and change
what the default flags are (they currently are set to read/write without swaps).

This sounds fine in theory, but I encountered one big problem after writing most of the graphics library. The
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vertex buffers and textures were streamed to disk as arrays of bytes, ignoring the actual structure of a vertex
and the actual format of a texture. This is a problem when you want to write-and-swap, because byte arrays
are never byte-swapped. Instead, it is necessary to write vertices one at a time and swap native fields as they
are encountered. Similary, texels must be written one at a time to ensure that the color channels are swapped
correctly; for example, if you have an RGBA 16-bits-per-channel texel, you must swap two bytes per channel
for each of four channels. The source code was due soon for the Game Physics, 2nd edition CD-ROM, so
it was too late to modify the code. Instead, I created WMOF (Wild Magic Object File) versions for little
endian and big endian. Only two such files are shipped anyway (FacePN.wmof and SkinnedBipedPN.wmof),
so not a big deal. My goal for future development is to avoid the streaming system and just rely on raw
formats for vertex buffers, index buffers, and textures, and each platform can generate its own byte-ordered
versions.

2.3.3 Path Handling

In WM4, the files Wm4System.* contained the ability to specify a filename and create the fully qualified hard-
disk path for the file. The function of interest was System::GetPath. Someone who had experience with the
Macintosh implemented the Apple version of this function, which involves some low-level operating system
calls. I had to hack this function, because it depended on how Xcode was configured (and the configuration
varied between Xcode versions). Not having enough experience with low-level Macintosh programming, I
ignored some complaints from users about how GetPath was slow and annoying.

In WM4, I also required users to set an environment variable that stored the path to the WildMagic4 folder
of the installation. I missed a simple opportunity to bootstrap off this environment variable and avoid the
low-level programming.

WM5 does take advantage of the environment variable, now called WM5 PATH in the WM5 distribution. Class
Environment encapsulates computing the fully qualified path for a specified file. Just as class System allowed
in WM4, Environment allows you to insert and remove directory strings (paths to the folders) for an array
of strings. The most common function in this class that the sample applications use is

std::string Environment::GetPathR (const std::string& name);

You specify the name of a file to be read (the suffix R stands for “read”) and the function returns the fully
qualified path for that file, if it can find it using the array of directory strings it manages. If it cannot find
the function, the empty string is returned.

The main entry point in the application code inserts the path to the WildMagic5 folder. It also inserts paths
to various WildMagic5/Data subfolders: Wmfx, Wmof, Wmtf, Wmvf, and Im. More importantly, the path to
the application’s project folder is inserted in the main function. The application initialization mechanism
sets the path, which is a static member Application::ThePath. In order for this to work, it is necessary
that the application set the console title (for ConsoleApplication-derived classes) or the window title
(for WindowApplication-derived classes). For example, the application BillboardNodes has a class with
constructor defined as

BillboardNodes::BillboardNodes ()

:

WindowApplication3("SampleGraphics/BillboardNodes",0, 0, 640, 480,

Float4(0.9f, 0.9f, 0.9f, 1.0f)),
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mTextColor(1.0f, 1.0f, 1.0f, 1.0f)

{

}

The window title is the quoted string. This string is appended to the fully qualified string for the WildMagic5
folder. The resulting string is the fully qualified path for the folder of the BillboardNodes project.

2.4 Memory

2.4.1 WM4 Memory Tracking

WM4 has a memory system that supported finding memory leaks. The macros WM4 NEW and WM4 DELETE are
simple macros that wrap new and delete when the memory system is disabled and that wrap new( FILE , LINE )

and delete when the memory system is enabled. All engine memory allocations and deallocations use these
macros so that without code changes, you can toggle on/off the memory tracking.

The heart of the system is class Memory whose interface is used to override the C++ operators

void* operator new (size_t size, char* file, unsigned int line);

void* operator new[] (size_t size, char* file, unsigned int line);

Although a simple system, the override affects all allocations in the application; indirectly, any other code
linked to the application is forced to use the overridden operator.

I was not satisfied with this approach, wanting instead to provide the ability for users to substitute in their
own memory management/tracking system that affects only Wild Magic code. For example, a user might
want to patch in a system that gives Wild Magic a memory budget–a fixed-size heap that the engine must
use for all its memory needs.

I also was not satisfied with the C++ memory management itself. In the memory tracking, the calls
to new( FILE , LINE ) allow you to intercept the allocation request and save it for writing to a log
file at the end of an application run. If there is a memory leak, the log file can list information about the
allocations, including the name of the source file and the line of that file where the leaked allocation occurred.
Unfortunately, C++ does not allow you to override delete in a way that uses the FILE and LINE

macros. At first glance you might override with

void operator delete (void* address, char* file, unsigned int line);

void operator delete[] (void* address, char* file, unsigned int line);

#define WM4_DELETE delete(__FILE__,__LINE__)

This does not do what you think it does. These versions of delete are called only when exceptions occur,
and you cannot force them to be called otherwise. It would really be helpful to be able to log the files and
lines on which deallocations occur, especially when you want to monitor memory usage patterns rather than
memory leaks.

The operator new function is for dynamically allocating a single object, a 0-dimensional array so to speak.
The operator new[] function is for dynamically allocating a 1-dimensional array of objects. The general
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rule is that if you allocate with operator new, you must deallocate with operator delete. If you allocate
with operator new[], you must deallocate with operator delete[]. If you mix these, consider that an
error in memory management, even if the application does not abnormally terminate. For example,

MyObject* objects = new MyObjects[10];

delete[] objects; // matches the new[] call

delete objects; // error - a mismatch

It is the programmers reponsibility to ensure the new and delete calls are matched.

C++ does not have new/delete operators for higher dimensional arrays. It is not clear how to provide
language support for this in a robust manner. For example,

MyObject** objects0 = new MyObject*[N];

for (i = 0; i < N; ++i)

{

objects0[i] = new MyObject[M];

}

<code using objects0>;

for (i = 0; i < N; ++i)

{

delete[] objects0[i];

}

delete[] objects0;

MyObject someObjects[N]; // objects live on the stack, not in the heap

MyObject** objects1 = new MyObject*[N];

for (i = 0; i < N; ++i)

{

objects0[i] = &someObjects[i];

}

<code using objects1>;

delete[] objects1;

In the first block of code, the user has dynamically allocated a 2-dimensional array of MyObject objects,
manipulated the objects, and then dynamically deallocated the array one row at a time. In the second block
of code, the user has created a 1-dimensional array of MyObject* pointers that point to a 1-dimensional array
of MyObject objects that live on the stack. It is an error to attempt to dynamically deallocate these objects.
Clearly, the semantics of objects0 and objects1 are different, despite both being of type MyObject**.
Without knowledge of the semantics, it would be difficult for C++ to provide a new/delete pair for Type**
pointers.

In the case when the user does want a 2-dimensional array of the form that objects0 illustrates, you can
provide your own allocation and deallocation. WM4 had several template functions in class System for
allocating and deallocating 2-dimensional and 3-dimensional arrays. The idea of these is to encapsulate the
work required, hiding the details from the user, and to minimize the number of new/delete calls. Returning
to the first code block of the example, an alternative scheme that minimizes new/delete calls is

MyObject* objects2 = new MyObject*[N];
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objects2[0] = new MyObject[N*M];

for (i = 1; i < N; ++i)

{

objects2[i] = &objects2[0][M*i];

}

<code using objects2>;

delete[] objects2[0];

delete[] objects2;

Allocation of objects0 requires N+1 calls to new and deallocation requires N+1 calls to delete. Allocation
of objects2 requires 2 calls to new and 2 calls to delete. Calls to new/delete can be relatively expensive
because of the work that the memory manager must due to manage the free list of blocks, so minimizing
the calls is a desirable goal. Moreover, you are guaranteed that the N*M MyObject objects are contiguous,
which can be friendly to a memory cache, and also allows you to iterate over the 2-dimensional array as a
1-dimensional array in an efficient manner.

// Iteration as a 2-dimensional array.

for (row = 0; row < N; ++row)

{

for (col = 0; col < M; ++col)

{

MyObject& object = objects2[row][col];

<do something with object>;

}

}

// Iteration as a 1-dimensional array.

for (i = 0; i < N*M; ++i)

{

MyObject& object = objects[0][i];

<do something with object>;

}

In the memory allocation scheme for objects2, you are not guaranteed that the rows occur in contiguous
memory, so there is the potential for memory cache misses when iterating over the 2-dimensional array, and
it is not possible to iterate over the objects as a 1-dimensional array.

Allocation and deallocation of 3-dimensional arrays with a minimum of new/delete calls is similar.

MyObject*** objects3 = new MyObject**[P];

objects3[0] = new MyObject*[P*N];

objects3[0][0] = new MyObject[P*N*M];

for (int j = 0; j < P; j++)

{

objects3[j] = &objects3[0][N*j];

for (int i = 0; i < N; i++)

{

objects3[j][i] = &objects3[0][0][M*(i + N*j)];
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}

}

<code using objects>;

delete[] objects3[0][0];

delete[] objects3[0];

delete[] objects3;

In WM4, the allocation and deallocation are wrapped with template functions named System::Allocate

and System::Deallocate. However, I find it displeasing to have inconsistent readability by calling WM4 NEW

for single objects (0-dimensional) and 1-dimensional arrays but having to call System::Allocate for 2-
dimensional and 3-dimensional arrays.

2.4.2 WM5 Memory Tracking

A review of the ideas in the previous section led me to the following requirements for the WM5 memory
management system. Several additional requirements were added as I discovered problems while developing
the memory manager. The first item in the list is about memory tracking disabled. All other items are
about memory tracking enabled.

1. When memory tracking is disabled, the allocation and deallocation fall back to the standard new and
delete calls.

2. Support semantics for arrays of dimension two or larger.

3. Interception of new and delete calls must affect only the Wild Magic source code; that is, a side effect
should not be that other systems (C++ run-time libraries or third-party software) are forced to use
the interception system.

4. Provide hooks to the users for the low-level allocation and deallocation so that Wild Magic transparently
accesses a user-specified heap (to enforce a memory budget).

5. File names and line numbers must be tracked both for allocations and deallocations.

6. The inclusion of FILE and LINE macros must be hidden from the user (for readability).

7. The tracking system must be reentrant; that is, if the system manages containers that store tracking
information and those containers must be dynamically allocated, they must not do so by using the
tracking system (infinite recursion problem).

8. The system must allow for smart pointers (reference-counted objects).

9. The tracking system must be thread safe.

I struggled with designing a system that satisfied all the requirements, finally settling on the one that is
implemented in class Memory. I was burned only a couple of times along the way . . .

Usage

Before discussing the issues in designing Memory, let us look at the final result and how it is used. A set
of macros are defined to make allocation and deallocation calls simple, readable, and that hide the file-line
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information. The allocation macros are named: new0, new1, new2, new3, and new4. The numeric suffix
denotes the dimension of the allocation. Effectively, new0 corresponds to new for a single object, new1

corresponds to new[] for a 1-dimensional array of objects, and the remaining macros correspond to higher
dimensional arrays, as described in the previous section (minimizing the number of calls to new). The
corresponding deallocation macros are delete0, delete1, delete2, delete3, and delete4. Although it is
still the user’s responsibility to pair the correct new/delete macro calls, if there is a mismatch (on a delete
call), the memory tracking system will report this. In my development environment, these macros were
added as user keywords, which I highlight in purple.

For allocation, all but the new0 call are templated. Typical usage is

MyObject* object = new0 MyObject(parameters);

delete0(object);

MyObject* objects1 = new1<MyObject>(numElements);

objects1[elementIndex] = <do something>;

delete1(objects1);

MyObject** objects2 = new2<MyObject>(numRows, numColumns);

objects2[rowIndex][columnIndex] = <do something>;

delete2(objects2);

MyObject*** objects3 = new3<MyObject(numSlices, numRows, numColumns);

objects3[sliceIndex][rowIndex][columnIndex] = <do something>;

delete3(objects3);

Design Issues

Now for design issues. One of the main problems I had was trying to wrap the allocation and deallocation
with macros for readability and ease of use, yet satisfying all the requirements I mentioned previously. It
appeared to be practically impossible to use macros, hide an overload of operator new specific to Wild
Magic, interact properly with new for single objects, hide the FILE and LINE macros, and fall back to
standard new and delete when the tracking is disabled. Moreover, Requirement 7 is problematic, because
it effectively forces you to have a container external to the WM5 memory management system, which means
a memory budget cannot be fully enforced. I decided that having such a container was something I (and
users) can live with–you can always estimate how large a container will be for your application, and then
factor that into your memory budgets.

In WM4, I had a macro to wrap overloaded operator new,

#define WM4_NEW new(__FILE__,__LINE__)

void* operator new (size_t size, char* file, unsigned int line);

void* operator new[] (size_t size, char* file, unsigned int line);

This macro hides the FILE and LINE macros, satisfying Requirement 6. However, the overloaded
allocators violate Requirement 3–the compiler would generate code for non-Wild-Magic code that use the
overloads. Regardless, such a simple macro cannot simultaneously hide the file-line macros, the dimension
of the array to be allocated, and wrap the overloaded new.
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I was able to accomplish some of the hiding, but suffered the consequence of needing lines of code such as

MyObject* object = WM5_NEW(MyObject, constructorParameters WM5_FILE_LINE);

where WM5 FILE LINE expanded to nothing when memory tracking was disabled, but expanded to

#define WM5_FILE_LINE , __FILE__, __LINE__

when memory tracking was enabled. I was able to circumvent this problem by designing Memory so that
objects of this class were only temporary (for one line of code) but stored the file-line information. This also
addressed Requirement 5 (tracking delete calls). Specifically, class Memory has members mFile and mLine

and a constructor

Memory::Memory (const char* file, int line) : mFile(file), mLine(line) { }

The file-line information persists only while the temporary object exists, so they are temporarily accessible
to the memory tracking system.

The overloaded allocation operator has signature

void* operator new (size_t numBytes, const Wm5::Memory& memory);

This satisfies Requirement 3 in that it is not possible for the compiler to match this against allocation calls
outside the Wild Magic 5 engine. There was no need to overload operator new[].

Some of the macros for allocation and deallocation are

#define new0 new(Wm5::Memory(__FILE__,__LINE__))

#define new1 new Wm5::Memory(__FILE__,__LINE__).New1

#define delete0 Wm5::Memory(__FILE__,__LINE__).Delete0

#define delete1 Wm5::Memory(__FILE__,__LINE__).Delete1

Notice that new0 uses the overloaded new operator, where the input memory is a reference to the temporary
Memory object. In the implementation of the overloaded new operator, the memory tracking system has
access to file-line information because the temporary object stores that information.

Template and Macro Interaction

Notice that new1 raises some additional questions. The intent is for this macro to support allocation of
1-dimensional arrays of any type. The type information is not part of the macro. One could explore the
possibility for including the type as a macro parameter, and I did explore this. You quickly run into the
problem that the types might be template types with multiple parameters separated by commas. These
commas interfere with the preprocessor’s parsing of the macro. For example, you might try

#define new1(type) new(Wm5::Memory(__FILE__,__LINE__)) type

float* anArray = new1(float)[10]; // okay

MyTemplate<int,float> anotherArray = new1(MyTemplate<int,float>)[10]; // error
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The last line is a problem because the preprocess things that MyTemplate<int is the macro parameter. To
convince the preprocessor otherwise would require an extra pair of parentheses

new1((MyTemplate<int,float>))[10]; // still an error

but this does not work because the extra parentheses now cause a syntax error when the compiler tries to
determine the type of the allocation. A fix is to use

typedef MyTemplate<int,float> MyTemplateIF;

MyTemplateIF anotherArray = new1(MyTemplateIF)[10]; // okay

but then the user has to make excessive use of typedef. There were other situations in the engine where I
wanted to pass template types through macro parameters, but the template-comma/macro-comma problem
prevented those, too. It would have been nice had C++ provided a separator other than a comma for
multiple template parameters.

At any rate, the Memory class was then designed to have functions New1, New2, and so on, that are templated.
This avoids having to pass template types through macro parameters, but runs the risk of generation of
excessive code. These templated member functions are why the previous example had code such as

MyObject* objects1 = new1<MyObject>(numElements);

// The macro expanded code.

MyObject* objects1 = Wm5::Memory(__FILE__,__LINE__).New1<MyObject>(numElements);

Lack of Specialized New0

Observe that there is no templated function Memory::New0. I had hoped to have consistent coding style for
all allocations, wanting

MyObject* object = new0<MyObject>(parameters);

My first pass on the design and implementation used this approach, and the Memory class had a large number
of New0 functions, one for a default (0-parameter) constructor, one for a 1-parameter constructor, and so on.
The implementation was along the lines of the following abstraction for a 2-parameter constructor,

template <typename T, typename Param0, typename Param1>

T* Memory::New1 (Param0 p0, Param1 p1)

{

// Memory tracking code not shown...

return new T(p0, p1);

}

During testing, I was burned by this approach. A class had a constructor with a constant reference, say,
MyClass::MyClass (int i, const SomeClass& object).
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SomeClass object = <some object>;

MyClass* something = new0<MyClass>(i, object);

The compiler determined Param0 was int and Param1 was SomeClass, not const SomeClass&. The gener-
ated code included creating a temporary copy of object and passing the copy to the MyClass constructor,
which had some difficult to diagnose side effects. Realizing that the difference was template code generation
instead of macro textual substitution, I removed the support in Memory for templated allocations of single
objects.

Hooks for User-Specified Allocations and Deallocations

There is a static function Memory::Initialize that allows the user to specify low-level memory allocators
and deallocators. Defaults are provided, namely, Memory::DefaultAllocator, which wraps malloc, and
Memory::DefaultDeallocator, which wraps free. The functions provided by the user must have parameters
for the file name and line number, even if the user is not interested in this information. The hooks for
allocation and deallocation allow you to provide a fixed-size heap when you want to insist on memory
budgets for the components of your application.

Memory Tracking

The Memory class maintains a map of the memory that is currently allocated by Wild Magic; see static member
msMap. This map uses memory from the global heap, so is not part of any user-specified heap implied by the
hooks to low-level allocators and deallocators. To avoid pre-main allocation, msMap is a pointer to a map and
must be allocated during initialization of the application. This is performed in Memory::Initialization,
which is called in main in Wm5Application.cpp. There is a matching Memory::Termination function that
is also called in main. Note that msMap is shared data, so it must be protected from concurrent accesses
when running in a multithreaded environment. Memory provides a mutex for the critical sections that access
msMap; see static member msMutex.

When a call is made to new0, the overloaded operator new is called. The implementation is in Wm5Memory.h.
A trap is supplied to ensure that msMap was actually allocated; if the trap is activated, an assertion is triggered
to let you know that the map does not exist. The most likely event is that you are trying to allocate memory
before main has been called (such as global objects within file scope that require dynamic allocation of
members). In this event, the allocation does not fail (in release builds); rather, it just uses malloc and does
not track the memory.

When the map does exist, the static member function Memory::CreateBlock is called. Its parameters are
the number of bytes to be allocated and the dimension of the request, which is zero for New0. CreateBlock
has a critical section that calls msAllocator, which is either Memory::DefaultAllocator or an allocator
supplied by the user via Memory::Initialize. The address of the allocated block is the key for the map
entry and a Memory::Information object is created to be the value for the map entry. The information
object stores the number of bytes requested, the number of dimensions, the file name, and the line number
for which the request was made.

When a call is made to new1, more work must occur than that for new0. A trap also occurs in Memory::New1

for an allocation request that is made before msMap exists. If the request is made pre-main, then the standard
C++ new[] function is called and the memory is not tracked. I recommend that you not allocate pre-main,
because it makes for more predictable debugging (in a single-threaded environment) when all allocations
occur when in the scope of main (including any of the functions it calls).
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If the allocation request is made when the map exists, the allocation in Memory::CreateBlock uses low-level
C-style memory allocation (malloc by default). However, the call to new1 is for an array of objects that
must then be default constructed. This is accomplised by calling the placement-new operator.

template <typename T>
T* Memory::New1 (const int bound0)
{

T* data;
if (msMap)
{

// Insert T[] into memory map.
data = (T*)CreateBlock(bound0*sizeof(T), 1);

// Call the default constructors for T.
T* object = data;
for (int i = 0; i < bound0; ++i, ++object)
{

::new(object) T; // THE PLACEMENT-NEW CALL
}

}
else
{

#ifdef WM5_USE_MEMORY_ASSERT_ON_PREMAIN_POSTMAIN_OPERATIONS
assertion(false, "Pre-main allocations are not tracked.\n");

#endif
data = new T[bound0];

}
return data;

}

The implementations for New2, New3, and New4 are similar.

The implementations of Delete0 through Delete4 have a similar flavor. If the map does not exist when
a deletion is requested, most likely the problem is post-main deallocation. A trap is set for this and, if
encountered, the memory is deleted using the standard C++ delete operator. If the map does exist, then
a critical section is entered and msMap is searched for the address-information pair that should be in the
map–the memory was allocated at some previoue time. It is possible that the pair is not in the map, perhaps
a double deletion, so an assertion is triggered. In release configurations, the deletion is actually made using
the standard C++ delete operator. (It is possible that new was used to allocate but delete0 was used to
deallocate.)

When the pair exists in the map, a comparison is made between the Information member for number of
dimensions and the dimension implied by the deleteN call (N is 0, 1, 2, 3, or 4). If there is a mismatch, an
assertion is triggered. The goal is to provide debugging support to let the user know that there is a mismatch
in allocation and deallocation calls.

Assuming the pair exists and the dimensions match, the object must be destroyed. Because this is not an
implicit generation by the compiler of a destructor call, an explicit destruction call must be made. For
example,

template <typename T>
void Memory::Delete0 (T*& data)
{

if (data)
{

if (!msMap)
{

#ifdef WM5_USE_MEMORY_ASSERT_ON_PREMAIN_POSTMAIN_OPERATIONS
assertion(false, "Post-main deallocations are not tracked.\n");

#endif
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delete data;
data = 0;
return;

}

msMutex.Enter();

MemoryMap::iterator iter = msMap->find(data);
if (iter != msMap->end())
{

if (iter->second.mNumDimensions == 0)
{

// Call destructor for T. If T is a pointer type, the
// compiler will not generate any code for the destructor
// call.
data->~T(); // EXPLICIT CALL TO THE DESTRUCTOR

// Remove T from memory map.
msMap->erase(data);
msDeallocator(data, mFile, mLine);

}
else
{

assertion(false, "Mismatch in dimensions.\n");
}

}
else
{

#ifdef WM5_USE_MEMORY_ALLOW_DELETE_ON_FAILED_MAP_LOOKUP
delete data;

#else
assertion(false, "Memory block not in map.\n");

#endif
}

data = 0;

msMutex.Leave();
}

}

After the object(s) is destroyed, the address-information pair is removed from the map. Finally, the memory
is deallocated by a call to msDeallocator, which is either Memory::DefaultDeallocator or a function
provided by the user in the call to Memory::Initialize.

Fallback to Standard C++ Calls

Enabling or disabling the WM5 memory tracking system is accomplished by symbols in Wm5CoreLIB.h. The
default is that it is enabled in debug configurations, whereby WM5 USE MEMORY is defined. When the memory
system is disabled, the macros new0 through new4 and delete0 through delete4 are expanded to inline
function calls. The signatures are provided in Wm5Memory.h and the implementations are in Wm5Memory.inl.
These functions only use C++ new and delete calls; in fact, the class Memory is not even defined when the
memory system is disabled.

Smart Pointers

WM4 has a reference-counting system that is implemented in class SmartPointer. This system is tied to the
base class Object. In particular, each Object manages its own reference count. Firstly, this is not thread
safe. You can have a race condition when two threads are attempting to modify the reference counter when
the object is being accessed by both threads. Secondly, this ties the reference counting to the Wild Magic
graphics library. Thirdly, the smart pointers work only for single objects. Arrays of objects must be handled
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differently; for example, see the Wm4TSharedArray class .

In WM5, the smart pointers are thread safe, the reference counting is external (not part of some base class
for object-oriented support), and there are various smart pointer classes to support sharing of arrays as well
as single objects. The implementation is in files Wm5SmartPointer.*.

The base class for smart pointers is PointerBase. This is similar to the Memory class in that a map is used
to keep track of objects that are currently reference counted (the references that were managed by the WM4
Objects are not managed by an external system). One difference, though, is that the msMap member is an
object, not a pointer. You may not create reference counted objects pre-main and they may not be destroyed
post-main–I can modify this to be allowed, but it is better for ease of debugging not to allocate/deallocate
before/after main.

The derived class Pointer0 of WM5 is equivalent to the WM4 class Pointer. The suffix of 0 denotes that
this class is for sharing of single objects (0-dimensional). The derived class Pointer1 is used to share 1-
dimensional arrays. There is no need for a separate class such as Wm4TSharedArray. Other smart pointer
classes exist for sharing 2-, 3-, and 4-dimensional arrays.

The semantics are the same as they were in WM4. When an object is shared by someone new, the (external)
reference count is incremented. When a shared object goes out of scope, its (external) reference count is
decremented. When the reference count becomes zero, the object is deleted/deallocated. The code has traps
for various unexpected conditions, and asserts are triggered accordingly.

2.5 ObjectSystems

2.5.1 Initialization and Termination

WM4 provides the ability for each class to have static initialization and termination functions. These are
registered pre-main. The initializers are executed after main begins but before the application starts (before
Application::Run is executed). The terminators are executed after the application finishes but before main
ends. This allows you to have better predicability of what your application is doing–you have no control over
the order of pre-main initialization calls and post-main termination calls that are generated by the compiler.
WM5 uses the same system for initialization and termination.

2.5.2 The Object Base Class

Just like WM4, WM5 has a base class called Object that provides various services for large libraries. The
class supports run-time type information (RTTI), naming of objects, and streaming. The WM4 base class
also had the foundation for smart pointers, but in WM5 the smart pointer system is external (not part of
Object).

RTTI and naming remain unchanged from WM4 to WM5. However, the streaming system was significantly
revamped. From a high-level perspective, the interface functions for streaming are the same (although I
skipped porting the StringTree code). However, the streaming is now factored into input streaming and
output streaming. The linker pass has had a major overhaul (described later).

The WM4 streaming system has a new feature that turned out to be necessary when I painted myself into
a corner. The loading system used the default constructor for Object-derived classes to generate an object
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via a factory. This object was then assigned data that was loaded from disk. There are times where the
default constructor performs significant work, such as memory allocation. The loading system really needed
a “clean object” created. In the case of default construction that contains memory allocation, some hard
to track memory leaks were occurring. The load-data-and-assign-to-object paradigm itself was allocating
memory for various members and overwriting the pointers that were allocated by the default constructor. To
circumvent this subtlety, Object has an enumeration LoadConstructor with a single member LC LOADER.
There is a constructor Object(LoadConstructor) and each derived class must have such a constructor.
These are now what the loading system uses, so you do not have to worry about loading interfering with the
default constructor semantics.

2.5.3 Run-Time Type Information

Support for run-time type information has not changed from that of WM4. The template functions
StaticCast and DynamicCast still exist. The Object members IsExactly, IsDerived, IsExactlyTypeOf,
and IsDerivedTypeOf still exist.

2.5.4 Object Names

Support for object names has not changed from that of WM4. The Object members GetObjectByName and
GetAllObjectsByName still exist.

2.5.5 Streaming

The streaming system was factored into support for input streams (reading from disk or from buffer) and
for output streams (writing to disk or to buffer). The public interfaces are reduced to the bare essentials.

The input streaming is implemented in class InStream. You can create and destroy such objects. You can
either load objects from a buffer (in memory) or from a file (on disk). Once objects are loaded, you can
access them via the member functions GetNumObjects and GetObjectAt. The low-level reading functions
are templatized. Specializations of some of these are provided by other classes (in the graphics library),
specifically those that are aggregates of native types.

The output streaming is implemented in class OutStream. You can create and destroy such objects. You
can either save objects to a buffer (in memory) or to a file (on disk). Once an output stream is created,
you can insert objects to be streamed via the member function Insert. The low-level writing functions
are templatized. Specializations of some of these are provided by other classes (in the graphics library),
specifically those that are aggregates of native types.

The linker system was overhauled. In WM4, Object* pointers were written to disk for output streaming.
The written data was simply the memory addresses. When a file was loaded for input streaming, the memory
address in the file are of course no longer valid addresses, but they were used as unique identifiers for the
objects. For each unique identifier, an Object is created and paired with the identifier. After all Objectss
are created (the loading phase). Any Object* data members contain the unique identifiers. The linker phase
then kicks in and the unique identifiers are replaced by the actual memory addresses for the corresponding
objects.

Two problems occur with this system. Firstly, I had to account for the fact that some computers have 32-bit
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addresses and others have 64-bit addresses. Each memory address was packed into 64-bits on writing and
the unique identifiers were extracted from 64-bits on reading. Secondly, the same scene graph saved twice
can lead to two scene graphs on disk for which a byte-by-byte difference program will report are not the
same. For example, if you run an application and save the scene, then re-run the application and save the
scene again, the streamed files can have differences because memory addresses of the Objects are different
even though the scenes are the same at a high level.

All that is necessary is that a unique identifier be assigned to a Object* during a save operation, and
that unique identifier is written to disk. And the generation of the unique identifier must not depend on
application state (such as memory addresses). The WM5 linker system does this. Now when you stream the
same scene graph to disk multiple times, those files are the same byte-by-byte. (This assumes the saves are
to the same endian-order platform.)

2.6 Threading

I added support for mutexes and the hooks for threads. Class Mutex is provided for a standard mutex; see
files Wm5Mutex.*. The mutex details depend on platform, which are encapsulated in Wm5MutexType.h. On
Windows, the mutex type is made opaque by using void*, but in the implementation it is of type HANDLE.
On Macintosh and Linux, the pthread support is used for POSIX threads and mutexes. If you want a scoped
critical section (the mutex is destroyed when it goes out of scope), see Wm5ScopedCS.*.

Thread types are also platform dependent; see Wm5ThreadType.h. On Windows, the thread type is made
opaque by using void*. In the implementation it is a HANDLE. On Macintosh and Linux, the type is
pthread t. I have the Windows implementation started, but I have not yet provided examples that use
it. Over time, I will start the process of threading the engine code.

2.7 Time

I have only simple support for time measurements, in Wm5Time.*. The function GetTimeInMicroseconds

is a wrapper for basic time measurements, but they are not for a high-resolution timer. There is also
GetTimeInSeconds. Eventually, I will add platform-dependent support for high-resolution timers. The
current functions suffice for simple frame-rate monitoring.

3 LibMathematics

The mathematics code was factored out of the WM4 LibFoundation library into its own library. The
folder organization has changed. The WildMagic4/Mathematics folder was split into WildMagic5/Base,
WildMagic5/Algebra, WildMagic/Object2D, and WildMagic/Object3D.

3.1 Base

The Base folder contains the Math class in files Wm5Math.*. The bit hack functions are in Wm5BitHacks.*.
Classes Float1, Float2, Float3, and Float4 were added to support the graphics library. These are simple
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classes derived from the Tuple template class in LibCore and provide specialized constructors and assign-
ment.

3.2 Objects2D

The old Mathematics folder contained classes for 2D objects. These classes and files were moved to the new
Object2D folder.

3.3 Objects3D

The old Mathematics folder contained classes for 3D objects. These classes and files were moved to the new
Object3D folder.

3.4 Algebra

3.4.1 Vector and Matrix Classes

The algebra classes used most by WM4 were moved to Algebra. These include Vector2, Vector3, Vector4,
Matrix2, Matrix3, Matrix4, and Quaternion.

3.4.2 Classes to Support Numerical Computations

Classes supporting numerical computations were moved to the Algebra folder. These include Polynomial1,
GVector, GMatrix, and BandedMatrix.

3.4.3 New Classes for Affine and Homogeneous Algebra

The Algebra folder contains new files for new classes. The main idea is that the data of the classes are
4-tuples or 4 × 4 matrices, all component of type float and which will eventually be set up for SIMD
computations. (At the moment they are not set up for SIMD.) The template Vector and Matrix class still
remain template classes that can support 32-bit float and 64-bit double.

AVector represents 3D vectors but stored as 4-tuples of the form (x, y, z, 0). APoint represents 3D points
but stored as 4-tuples of the form (x, y, z, 1). HPoint represents homogenous 4-tuples of the form (x, y, z, w).
HMatrix represents homogeneous 4× 4 matrices. HQuaternion is not much different from Quaternion, but
the idea was to encapsulate the planned SIMD code computations in HQuaternion. HPlane represents a
plane as a 4-tuple.

I originally used the Curiously Recurring Template paradigm for the Vector and Matrix classes, but in
my opinion the problems with getting this to work properly on all the supported platforms was not worth
the effort. I ran into problems with the C++ requirement for template classes derived from other template
classes that force you either to scope the base class with this->mSomeMember or to add a using statement
in the derived class to avoid the explicit scoping. I am still of the opinion that having to scope base class
members but not scope global variables is backwards. The using paradigm has its own problems, because
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it can affect the public/protected/private mechanism. With the vector and matrix classes, the Microsoft
compiler had problems with using and started complaining about certain base-class members not being
visible when without using they were. Having enough of this, I ripped out the CRT paradigm and just
derived the Vector classes from Tuple and the Matrix classes from Table.

I added the struct Information nested structures to Vector2 and Vector3. This informatoin used to be
in the WM4 Mapper2 and Mapper3 classes and used by the computational geometry code. I eliminated the
mapper classes.

One of the annoyances with representing 3-tuples as 4-tuples is that there are several situations in the
graphics engine where you have to convert from one to the other, especially with reading and writing vertex
buffers. The new classes have some constructors and implicit conversion operators to support this, but I
consider them an eye sore.

3.5 CurvesSurfacesVolumes

WM4 had separate folders, Curves and Surfaces, and some other code for B-spline volumes. I consolidated
all these files into a single folder in WM5, CurvesSurfacesVolumes.

3.6 Distance

Nothing has changed regarding functions for distance calculations. The number of files and combinations
are too numerous to summarize them here in an effective manner.

3.7 Intersection

Nothing has changed regarding functions for intersection calculations. The number of files and combinations
are too numerous to summarize them here in an effective manner.

3.8 Approximation

Nothing has changed regarding functions for approximations and fitting. The number of files and combina-
tions are too numerous to summarize them here in an effective manner.

3.9 Containment

Nothing has changed regarding functions for containment. The number of files and combinations are too
numerous to summarize them here in an effective manner.

3.10 Interpolation

Nothing has changed regarding functions for interpolation. The number of files and combinations are too
numerous to summarize them here in an effective manner.
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3.11 NumericalAnalysis

Nothing has changed regarding the numerical analysis code except that I renamed the class Eigen to
EigenDecomposition.

3.12 Meshes

Nothing has changed regarding the graph data structures for meshes.

3.13 Rational

The integer and rational arithmetic code was moved from the WM4 ComputationalGeometry folder to its
own folder. The reason is that many other algorithms can use exact rational arithmetic, so no reason to
isolate it to the computational geometry folder.

Class Rational has constructors and converters for float and double to Rational. These had not handled
subnormal (denormal) numbers, and in fact the conversions were significantly slow. In WM4 and WM5,
Rational now handles subnormal numbers and the conversion code is a lot faster.

3.14 Query

The queries involve floating-point arithmetic, but some also involve exact integer and rational arithmetic. I
moved these to a separate folder for the same reasons as the Rational folder. The computational geometry
code is not the only code in the engine that can benefit from exact arithmetic, so no reason to isolate the
queries to the computational geometry folder.

3.15 ComputationalGeometry

Other than moving the exact integer and rational arithmetic to a new folder and the queries to a new folder,
nothing has changed in this folder.

3.16 Miscellaneous

Nothing has changed in this folder.

4 LibGraphics

The graphics library has the most significant changes of anything from Wild Magic 4. LibGraphics of Wild
Magic 5 is a significant rewrite of its predecessor.
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4.1 DataTypes

The Bound class has nearly the same interface as in WM4, except that the sphere center is a APoint rather
than a Vector3f. The Bound::ComputeFromData function now takes a generic pointer and a stride to allow
you to compute a bounding sphere from data that lives in a vertex buffer. In WM4, the data was a contiguous
array of 3-tuple positions.

The Transform class has much of the interface as that in WM4. However, the class stores a homogeneous
matrix that is used by the graphics system. This matrix is a composition of the translation, scale, and
rotation (or general matrix) components of the transformation. The class also stores the inverse of the
homogeneous matrix. This matrix is computed only when it is needed. Once I add SIMD support, this class
will have an option to use it instead of the standard CPU computations.

The files Wm5HalfFloat.* contain converters between 32-bit floating-point numbers and 16-bit floating-point
numbers. The latter are stored as unsigned short integers. The conversion is useful for vertex buffers and
textures that want to use half floats.

The files Wm5Color.* contain the implementation of a class Color that has all static members. This is used
to convert between various color formats for use by the WM5 texture system. Specifically, the conversion is
used for generating mipmaps on the CPU.

The streaming code in LibCore has classes InStream and OutStream that contain some template mem-
ber functions to support streaming of aggregrate data. For example, Bound has an APoint member and
a float member. Transform has several native members. To stream these, the template member func-
tions of InStream and OutStream must be specialized; see the functions of the form ReadAggregate* and
WriteAggregate*. Specializations are in the files Wm5SpecializedIO.*.

The files Wm5Utility.* contain only two functions that are used by the SampleGraphics/CubeMaps appli-
cation.

4.2 Resources

The renderer has various resources that it manages. These include vertex buffers, vertex formats, index
buffers, render targets, and textures. The Resources folder stores the source files for these objects.

A vertex format describes the layout of a vertex in a vertex buffer. DirectX 9 has an interface for this,
IDirect3DVertexDeclaration9, and each item of interest in the vertex format is a vertex element (position,
normal, color, texture coordinate, and so on), D3DVERTEXELEMENT9. OpenGL does not encapsulate this
concept, so the WM5 OpenGL renderer creates its own representation. The term render target is DirectX 9
terminology. OpenGL uses the term framebuffer object. I flipped a coin to decide which term to use–render
target won.

The classes VertexBuffer, IndexBuffer, VertexFormat, Texture1D, Texture2D, Texture3D, TextureCube,
and RenderTarget are all platform independent. The Renderer class is an abstract interface that has several
member functions that allow you to bind the platform-independent objects to platform-dependent objects,
the latter objects not visible to the application writer. The platform-dependent objects are managed by the
back-end renderers for DirectX and OpenGL.

When working with vertex buffers, the vertex formats tell you how the vertices are structured. The class
VertexBufferAccessor takes a format-buffer pair and allows you to set/get the vertex buffer data. This
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class has template member functions that allow you to access the buffer data in whatever form is convenient
to you. The sample applications make heavy use of this class, so look at those applications for usage.

4.3 Renderers

The LibGraphics/Renderers folder has files Wm5Renderer.* that has the abstract interface for rendering
that is platform independent. Any member functions that do not depend on the underlying graphics API
are implemented in Wm5Renderer.cpp. Platform-dependent implementations occur in several subfolders.

The Dx9Renderer subfolder has a DirectX 9 implementation. There are no implementations for DirectX 10
or DirectX 11.

The OpenGLRenderer subfolder has an OpenGL implementation. Please be aware that the shader system
of Wild Magic 5 (and previous) uses OpenGL extensions that were available before OpenGL 2.0 shipped.
These extensions are friendly to having an FX system that uses NVIDIA’s Cg programs, and the back-end
DirectX and OpenGL renderers have very similar organization. I have plans to move to OpenGL 2.0 and
later, using GLSL instead of Cg, and to abandon Cg programming. See the last section of this document on
the future of Wild Magic.

OpenGL renderer creation and a few operations (swap buffers, for example) are specific to the platform. The
Microsoft Windows OpenGL portions (WGL) are in the subfolder WglRenderer. Macintosh OS X OpenGL
portions (AGL) are in the subfolder AglRenderer. Linux OpenGL portions (for X Windows) are in the
subfolder GlxRenderer.

The resource management member functions of Renderer have names such as Bind, Unbind, Enable,
Disable, Lock, and Unlock. The Bind call creates a platform-dependent object that corresponds to the
platform-independent resource. For example, Bind applied to a VertexBuffer will create a corresponding
platform-dependent object PdrVertexBuffer. Other calls support lazy creation; for example, if you call
Enable for a VertexBuffer and the platform-dependent companion PdrVertexBuffer does not yet exist,
one will be created automatically.

For most applications, you do not even need to worry about explicit calls to the resource management
functions. The rendering system will handle this for you. One exception, though, is related to render
targets. Sometimes it is necessary to bind a render target explicitly so that its underlying texture object
is bound for use as a render target. If that texture object is attached to an effect, and you draw an object
using the effect before the render target is created, the texture object is bound as a regular texture, not as
a render target. See the image processing samples for examples.

The Lock and Unlock calls were designed to allow you to access vertex buffers, index buffers, and textures
directly when they are in video memory. However, each resource is backed by system memory, which you can
also access. If you modify the system memory for buffers and textures, the Renderer interface has Update

calls that cause the corresonding video memory to be refreshed with the contents from system memory. If
you modify the video memory directly, the system memory and video memory are out of sync. This may be
of no concern in your application.

Originally, I planned not to back the resources with system memory, but then I remembered that users
reported that the DirectX 9 renderer of Wild Magic 4 does not handle lost devices. For example, if you
have a DX9 application running and then use CTRL-ALT-DELETE to launch the Windows Task Manager,
the application device is lost. When your application window is given the focus again, DX9 requires you to
recreate many (but not all) of the resources. I found it quite annoying that the operating system would not
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manage the video memory itself, forcing the application writers to have responsibility. Regardless, I added
the system memory backing and now the DX9 renderer will restore the resources. This is a serious waste of
system memory. I did not see this problem with OpenGL during WM5 development, but I was running only
on Windows Vista and Windows 7. Later, I read that Windows Vista and Windows 7 (via DirectX 10 or
11) does properly manage the video memory, but apparently DirectX 9 still makes you manage the memory
yourself. When I ship EmeraldGL (see the last section of this document), you can select whether or not to
have a system memory backing.

WM4 had the ability to attach global render state (alpha, face culling, depth buffering, polygon offset, stencil
buffering, wire state) to Node objects. This state was propagated to the leaf geometry and to the attached
effect via a call to UpdateRS. This system does not exist in WM5. You can, however, specify a global render
state for the Renderer that overrides that type of global render state when applying the shader effects to the
geometric objects that are being drawn. See the Renderer functions such as SetOverrideAlphaState. The
reason for removing this is that it seemed unnatural to allow WM4 Spatial and Node to contain render state
when their primary purpose instead was to manage hierarchical transformations and culling. After using
WM5 for quite some time now, I actually like the WM4 approach better and will restore it (in EmeraldGL).
A node hierarchy can very well manage multiple scopes (transformation/culling, render state, global effects).

Related to this is the ability in WM4 to attach an effect to a Node object. This ability is also removed in
WM5, but there is a new renderer Draw function that allows you to specify a global effect that overrides
any local effect in the geometry objects provided by the visible set. The sample graphics applications for
planar reflections and planar shadows show how to use global effects. In fact, these samples use multiple
scene graphs (some folks seem to think that an application must have only one scene graph, which has never
been required in Wild Magic).

4.4 Shaders

The WM5 shader system and FX system have had significant rewriting from what WM4 provided.

The LibGraphics/Shaders folder contains global render state that is nearly identical to that of WM4.
The classes for this state are AlphaState (alpha blending), CullState (face culling), DepthState (depth
buffering), OffsetState (polygon offset for depth biasing), StencilState (stencil buffering), and WireState

(wireframe/solid mode for drawing).

The special FX system is encapsulated by classes VisualEffect and VisualEffectInstance. Section 1.7
already provided some description of these. The FX system is similar to Cg FX and to HLSL support in
DirectX 9. An effect can have multiple techniques. A technique is encapsulated by VisualTechnique and
can have multiple passes. A pass is encapsulated by VisualPass. Each such pass has a set of global render
state, a vertex shader, and a pixel shader. The vertex shader is encapsulated by class VertexShader and
the pixel shader is encapsulated by class PixelShader. Both classes are derived from class Shader.

A Shader object contains an array of input names for the inputs, whether vertex attributes such as position,
normal, and so on, or pixel inputs (the outputs of the vertex shader). The object contains an array of output
names, also. Information about the shader constants and samplers used by the shader programs are also
maintained by Shader. This information is encapsulated in class ShaderParameters, which allows you to
set/get the constants and textures. The shader constants live in a system with base class ShaderFloat (see
the next section).

I still use Cg programs. The compiled shaders have text output that stores information used by Cg Runtime.
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A tool called WmfxCompiler ships with WM5 that uses the Cg output to generate binary files for local effects
to be loaded by WM5. The files contains ASM code for all the profiles WM5 supports for both OpenGL
and DirectX 9. Thus, one binary file (with extension wmfx) may be regardless of graphics API. The Shader

class stores all the program strings, registers, and texture units, and selects an appropriate program based
on which graphics API you are using and what the best profile your graphics card supports.

The program strings need not be generated and stored in a wmfx file. Many of the local effects in WM5 have
these strings and other information stored as class-static data. For basic applications, this means not having
to ship shader files as data for those applications. In WM4, to ship without the wmsp files, you would have
to embed them as character strings in the application/engine and then roll your own program loader/parser
to read from those strings rather than from disk.

4.5 ShaderFloats

The ShaderFloat class was designed to encapsulate shader constants and allow them to be streamed, just
as other graphics resources can be streamed. Most of the class interface is straightforward, allowing you to
set/get data in the various registers.

The class has four additional member functions that support updating of constants during run time,

inline void EnableUpdater ();

inline void DisableUpdater ();

inline bool AllowUpdater () const;

virtual void Update (const Visual* visual, const Camera* camera);

In the Renderer::Draw function for a single Visual object, there is a loop over the passes of an effect. In
that loop you will see

// Update any shader constants that vary during runtime.

vparams->UpdateConstants(visual, mCamera);

pparams->UpdateConstants(visual, mCamera);

The ShaderParameters::UpdateConstants is the following

void ShaderParameters::UpdateConstants (const Visual* visual,

const Camera* camera)

{

ShaderFloatPtr* constants = mConstants;

for (int i = 0; i < mNumConstants; ++i, ++constants)

{

ShaderFloat* constant = *constants;

if (constant->AllowUpdater())

{

constant->Update(visual, camera);

}

}

}
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The function iterates over the shader constants, querying each whether it allows (needs) updating. If it does,
then the ShaderFloat::Update function is called.

By default, the creation of a ShaderFloat object does not allow updating. For example, if you have
a ShaderFloat that manages a specific color for a vertex shader, and that color never changes during
application execution, then there is no need to update the color. However, some shader constants do
vary at run time, most notably those associated with the model-to-world matrix (map model coordinates
into world coordinates) and world-to-view matrix (map world coordinates to camera/view coordinates).
The ShaderFloat-derived classes that encapsulate runtime-varying constants should allow updates, either
setting mAllowUpdater in the constructors or by calling EnableUpdater. Moreover, the derived classes must
override the virtual function ShaderFloat::Update to perform the appropriate calculations.

The matrices tend to vary at a rate of once per draw call, so allowing the ShaderFloat::Update call to
occur always is the right thing to do. Some shader constants, though, might vary less frequently, in which
case the Update call needlessly consumes cycles. For these constants, you can call DisableUpdater so that
the update function is not called. When you change the value of the shader constant, call EnableUpdater,
allow the draw to occur, and then call DisableUpdater. At its lowest level, you can call the update function
yourself when needed, and always disable the update call–you always manage the shader constant status,
not the renderer.

The ShaderFloat folder contains a large number of derived classes. The one you will use most often
is PVWMatrixConstant that handles the world-view-projection matrix. This matrix is the one used by a
typical vertex shader for mapping the model-space vertex position to clip-space coordinates.

See the examples in the LocalEffects folder for how to create a VisualEffect-derived class. In particular,
you can see how to create the vertex and pixel shaders and how to create the shader constants. Creation of
a shader constant requires you to provide a string name, the same one used in the Cg program. Unlike WM4
which required you to name your shader constants with specific names so that the FX system functions
correctly, WM5 allows you to name the shader constants anything you like. Hooking them up with the
engine becomes the responsibility of the constructor for the effect.

4.6 LocalEffects

The LibGraphics/LocalEffects folder contains several examples of classes derived from VisualEffect.
These include basic vertex coloring, texturing, and lighting. The lighting effects include per-vertex effects
and per-pixel effects. All these classes have hard-coded program strings, registers, and texture units (as
class-static data).

4.7 GlobalEffects

I use the term global effect to refer to drawing that involves multiple geometric objects and requires direct
access to the renderer to manage the drawing. The examples implemented are for planar reflection and
planar shadows; sample graphics applications are provided for both.

The abstract base class GlobalEffect has a pure virtual function

virtual void Draw (Renderer*, const VisibleSet&);
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that is implemented in each derived class. This function is called by Renderer::Draw(const VisibleSet&,

GlobalEffect*) when you pass a non-null pointer via the GlobalEffect parameter.

For example, the classes PlanarReflectionEffect and PlanarShadowEffect implement the Draw function.
Much of that code involves managing global render state for alpha blending, depth buffering, and stencil
buffering. It also makes high-level draw calls to set camera matrices and to render the current visible set.

4.8 ImageProcessing

This code is new to Wild Magic that is more along the lines of using the GPU for general-purpose pro-
gramming. Some image processing, whether 2D or 3D, can be done on the GPU using render targets. The
prototypical case is to apply Gaussian blurring to a 2D image. Two render targets are used. The first target
is loaded with the image. The image is Gaussian blurred using a shader program and the output is drawn to
the second target. This target becomes the source for the next blurring pass, and the other target becomes
the destination. The targets alternate between being the source and destination targets.

There is a significant amount of overhead in the setup for doing this. The classes in the ImageProcessing

subfolder encapsulate the overhead so that the application itself can focus on the specific details of the filters
it wants to use to process the image.

The base class ImageProcessing contains the setup code common to both 2D and 3D image processing.
The class ImageProcessing2 builds on top of this by allowing you to select the type of boundary conditions
for the image filtering, currently Dirichlet or Neumann boundary conditions. The class also has a drawing
function that is called for the image processing. A sample application that illustrates this code is for 2D
Gaussian blurring, SampleImagics/GpuGaussingBlur2.

The class ImageProcessing3 is also derived from ImageProcessing. Image processing of 3D images has
a few more technical details to consider compare to 2D processing. On the CPU, a 3D image is typically
stored in lexicographical order. If the image has b0 columns (index named x), b1 rows (index named y), and
b2 slices (index named z), then the mapping from the three-dimensional image coordinate (x, y, z) to linear
memory with index i for lexicographical ordering is i = x + b0(y + b2z). The z = 0 slice is stored first in
memory in row-major order. The voxel ordering is such that x varies the fastest, y next fastest:

(0, 0, 0), (1, 0, 0), . . . , (b0 − 1, 0, 0), (0, 1, 0), . . . , (b0 − 1, b1 − 1, 0)

The z = 1 slice follow this one, and so on. This mapping is not useful for GPU computations on 3D images.

The 2D image processing naturally maps to render targets. Standard filtering, such as for Gaussian blurring,
uses finite differences to estimate derivatives. For example, centered differences to estimate first-order partial
derivatives are

∂f(x, y)

∂x

.
=

f(x + h, y)− f(x− h, y)

2h
,

∂f(x, y)

∂y

.
=

f(x, y − h)− f(x, y − h)

2h

for small h. Estimates for second-order partial derivatives are

∂2f(x,y)
∂x2

.
= f(x+h,y)−2f(x,y)+f(x−h,y)

h2

∂2f(x,y)
∂y2

.
= f(x,y+h)−2f(x,y)+f(x,y+h)

h2

∂2f(x,y)
∂x∂y

.
= f(x+h,y+h)+f(x−h,y−h)−f(x+h,y−h)−f(x−y,y+h)

4h2
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Gaussian blurring is modeled by the linear heat equation,

∂f

∂t
=

∂2f

∂x2
+

∂2f

∂y2

for some time scale t ≥ 0. The solution is a function f(x, y, t) and the initial condition is f(x, y, 0) = I(x, y),
where I(x, y) is your image. There are boundary conditions to deal with, but for the sake of illustration,
ignore these for now. Using a forward difference in time and centered differences in space, the heat equation
is approximated by

f(x, y, t+ k)− f(x, y, t)

k
=

f(x+ h, y, t)− 2f(x, y, t) + f(x− h, y, t)

h2
+

f(x, y + h, t)− 2f(x, y, t) + f(x, y + h, t)

h2

Solving for f at time t + k,

f(x, y, t + k) =

(
1− 4k

h2

)
f(x, y, t) +

k

h2
(f(x + h, y, t) + f(x− h, y, t) + f(x, y + h, t) + f(x, y − h, t))

The left-hand side represents a slightly blurred version of the image f(x, y, t). If f is stored as a texture in
a render target, the right-hand side becomes part of a pixel shader. The various f terms are evaluated as
samples of the texture (5 such evaluations).

The graphics APIs do not have the concept of a 3D render target where the underlying texture is a volume
texture. However, the 3D image can be represented as a tiled texture that is an array of 2D image slices.
For example, consider a 4 × 4 × 4 image. The tiled texture is a 2 × 2 array of 4 × 4 image slices. The tiles
are ordered as

z = 0 z = 1

z = 2 z = 3

As an 8 × 8 texture with origin in the upper-left corner, the layout is the following where the triples are
(x, y, z),

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (0,0,1) (1,0,1) (2,0,1) (3,0,1)

(0,1,0) (1,1,0) (2,1,0) (3,1,0) (0,1,1) (1,1,1) (2,1,1) (3,1,1)

(0,2,0) (1,2,0) (2,2,0) (3,2,0) (0,2,1) (1,2,1) (2,2,1) (3,2,1)

(0,3,0) (1,3,0) (2,3,0) (3,3,0) (0,3,1) (1,3,1) (2,3,1) (3,3,1)

(0,0,2) (1,0,2) (2,0,2) (3,0,2) (0,0,3) (1,0,3) (2,0,3) (3,0,3)

(0,1,2) (1,1,2) (2,1,2) (3,1,2) (0,1,3) (1,1,3) (2,1,3) (3,1,3)

(0,2,2) (1,2,2) (2,2,2) (3,2,2) (0,2,3) (1,2,3) (2,2,3) (3,2,3)

(0,3,2) (1,3,2) (2,3,2) (3,3,2) (0,3,3) (1,3,3) (2,3,3) (3,3,3)

The top row has texture coordinates (u, v) from left to right of (0, 0), (1, 0), . . . , (7, 0). The next row has
texture coordinates from left to right of (0, 1), (1, 1), . . . , (7, 1). The other rows have similar mappings to
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texture coordinates. The lexicographical mapping of the 3D image to 1D memory is i = x + 4(y + 4z). The
memory locations are

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .

In the tiled mapping, the texture is also stored in 1D memory. The ordering is

0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23, . . .

The ImageProcessing3 class has several member functions for mapping between (x, y, z), (u, v), and i. In
particular, the function CreateTiledImage takes as input a 3D image in lexicographical order and generates
a 2D tiled texture (as in the previous example).

Given a tiled texture, the next problem is to compute the finite differences for the filtering. For example,
3D Gaussian blurring is model by the linear heat equation,

∂f

∂t
=

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

where the solution is f(x, y, z, t) and the initial value is f(x, y, z, 0) = I(x, y, z) with I being the 3D image
to blur. Finite difference estimates are used, as in 2D, to obtain the numerical method

f(x, y, z, t + k) =
(
1− 6k

h2

)
f(x, y, z, t) + k

h2 (f(x + h, y, z, t) + f(x− h, y, z, t)

+f(x, y + h, z, t) + f(x, y − h, z, t) + f(x, y, z + h) + f(x, y, z − h))

Coding this in a pixel shader, the right-hand side must be evaluated. Each f term requires sampling the 2D
tiled texture. Let the texture function be T (u, v). For example, evaluation of f(1, 1, 0) requires sampling the
texture, T (1, 1). Evaluation of f(0, 1, 1) requires sampling the texture, T (4, 1). In the following discussion,
the voxel spacing is h = 1.

There are two problems with the sampling. Firstly, consider the pixel shader when the input is (x, y, z) =
(1, 1, 1). The evaluations of the function values for z = 1 are texture samples, f(x + h, y, z) = f(2, 1, 1) =
T (6, 1), f(x − h, y, z) = f(0, 1, 1) = T (4, 1), f(x, y + h, z) = f(1, 2, 1) = T (5, 2), and f(x, y − h, z) =
f(1, 0, 1) = T (5, 0). The texture samples are all at spatially close neighbors of (x, y, 1). The numerical
method also requires evaluating f(x, y, z + h) = f(1, 1, 2) = T (1, 5) and f(x, y, z − h) = f(1, 1, 0) = T (1, 1).
These texture samples are not spatially close to (x, y, 1). In order to shade the pixel at (x, y, z), it is necessary
to have a dependent texture lookup. The image filtering is accomplished by drawing to a render target using
a square as the geometry, with the square having texture coordinates (0, 0), (1, 0), (0, 1), and (1, 1). The
texture coordinates from the interpolation and that are passed to the pixel shader are used to look up the
(u, v) values for sampling T (u, v) that corresponds to f(x, y, z). The lookup is into what I call an offset
texture.

Secondly, the boundary conditions come into play. Consider when the input to the pixel shader is (x, y, z) =
(3, 1, 0). This is a boundary voxel in the original 3D image. Evaluation of f(x, y, z) = f(3, 1, 0) = T (3, 1) is
just a sample of the tiled texture. However, (x+h, y, z) = (4, 1, 0) is outside the 3D image. You must decide
how to handle boundary voxels in the blurring. The two standard choices are Dirichlet boundary conditions
and Neumann boundary conditions.

Dirichlet boundary conditions involve specifying the f -values on the boundary of the image to be a constant.
If an (x±h, y±h, z±h) input is outside the image domain, the f -evaluation just uses the specified constant.
We need to know, however, when an input to the pixel shader is a boundary pixel. This involves creating
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another dependent texture lookup. I call this texture a mask texture. The texture value is 1 when the
corresponding (x, y, z) is an interior voxel and is 0 when it is a boundary voxel.

Neumann boundary conditions amount to clamping to the image boundary. The evaluation of f(x+h, y, z) =
f(4, 1, 0) becomes an evaluation of f(3, 1, 0); that is, the x-value is clamped to 3. This would be equivalent
to clamp mode for a volume texture, but because we are using a tiled texture, the clamping has to be part of
the offset texture lookup described in the previous paragraph. Observe that any inputs (x, y, z) with z = 0
or z = 3 are boundary voxels.

The class ImageProcessing3 has member functions to compute the offset and mask textures based on which
type of boundary conditions you choose. An illustration of ImageProcessing3 is with 3D Gaussian blurring.
See SampleImagics/GpuGaussianBlur3.

The 2D and 3D Gaussian blurring samples do not use the mask texture. However, the GPU-based fluid
solver for 2D Navier-Stokes equations does (for what is called mixed boundary conditions). See the sample
SamplePhysics/GpuFluids2D. A class project recommended in Game Physics, 2nd edition involves imple-
menting GpuFluids3D. This also will use the offset and mask textures. Much of the foundation needed to
implement the 3D fluid solver is already built into ImageProcessing3.

4.9 SceneGraph

In Section 1.7, I already mentioned some key differences between scene graph classes of WM4 and WM5.
Most notably is the replacement of the WM4 class Geometry by the WM5 class Visual. The latter class
removes the support for per-node global render state and global effects, making it mainly a supporting class
for hierarchical transformations and culling. The Node class and special Node-derived classes are as they
were in WM4 (other than the removal of support for global render state and global effects).

As mentioned in Section 1.8, the lighting system has changed with the elimination of the ability to attach
lights to a scene. Class Light is now just a container for the light information, and the ShaderFloat-derived
classes for shader constants include a variety of constants involving lights and materials.

The Camera class has not changed much, but it does use APoint, AVector, and HMatrix for affine and
homogeneous entities. The class now has support for specifying pre-view and post-projection matrices. The
standard matrix used to map from model space to clip space is H = PVW , where W maps model space to
world space (the world matrix), V maps world space to camera/view space (the view matrix), and P maps
view space to homogeneous clip space (the projection matrix). The product is written with the convention
that it is applied to column vectors on its right, PVWx. Sometimes it is convenient to apply another
transformation to world space before the conversion to view space. The prototypical example is a reflection
matrix that is used for planar reflections (see PlanarReflectionEffect). Such a matrix R is referred to
as a pre-view matrix because it is applied before the view matrix is applied, H = PV RW . Sometimes it is
convenient to apply a transformation after the projection but before the perspective divide. The prototypical
example is a reflection matrix that is used for mirror effects (replace x by −x for example). Such a matrix
R is referred to as a post-projection matrix because it is applied after the projection, H = RPVW .

The CameraNode and LightNode classes are the same as in WM4. They allow you to attach a camera/light
to a scene graph. For example, you might have headlights on an automobile. The headlights have geometry
so you can draw them on the vehicle, and they have light associated with them that are used in rendering
to illuminate anything they shine on. The LightNode is given a light and can have the headlight geometry
attached as a child. Another example is a security camera in a corner of a room. The CameraNode manages
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the Camera position and orientation and the geometry to represent the physical box of the camera is attached
as a child.

The culling system has not changed. Classes Culler and VisibleSet are as in WM4. The picking system
also has not changed. Classes PickRecord and Picker are as in WM4.

The geometric primitive classes are the same, although I changed the name Polyline to Polysegment. Poly-
lines are really multiple segments, so why not call them polysegments? Regardless, the code reorganization
exposes Microsoft Windows (when on a Windows PC) and the Windows name Polyline clashed with my
class name. Rather than provided explicit scope with the Wm5 namespace, I just changed the name.

Two new classes were added. Class Projector is derived from Camera and allows the projector to use a
frustum with normalized depth different from what the underlying graphics API requires. If using OpenGL,
the underlying normalized depths are in [−1, 1]. But you can have a projector object with depths of [0, 1].

The class ScreenTarget provides support for creating standard objects needed for drawing to a render
target. This includes a screen-space camera, the rectangle geometry for the quad to which the render target
is associated, and texture coordinates for that quad. This hides some annoying differences between DirectX
and OpenGL texture coordinate and pixel coordinate handling.

4.10 Controllers

The controller system has the same design as in WM4, but I added two new classes.

The TransformController class is new and is designed to be a base class for any controller that modifies
Transform objects. The KeyframeController class is now derived from the new class. This fixed a subtle
problem when a keyframe controller attached to a node did not have keys to manage all of translation,
rotation, and scale. This never showed up in my Wild Magic 4 samples, but it did when adding support for
blended animations.

The other new class is BlendedTransformController. This controller allows you to manage two transform
controllers and blend together the keys. An illustration for using the class is in the new sample application,
SampleGraphics/BlendedAnimations. This sample has a skinned biped with two skin controllers (two
triangle meshes) and with keyframe controllers at a majority of the nodes of the biped. The biped has an
idle cycle, a walk cycle, and a run cycle. The sample shows how to blend these for transitions between idle
and walk and between walk and run.

4.11 Detail

The level-of-detail classes have not changed. However, I rewrote the CreateClodMesh classes to account for
the design changes for vertex buffers. I also thought hard about the abstract problem of the edge collapses,
and I believe this rewrite produced more readable source code. In particular, the WM4 version had a lot of
hand-rolled code for graph handling. I removed this and used as much standard C++ library support (STL)
as I could.
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4.12 Sorting

The sorting code has not changed from that of WM4.

4.13 CurvesSurfaces

The code for supporting dynamically tessellated curves and surfaces was mainly rewritten because of the
design changes for vertex buffers. This required some tedious changes to the internal workings, but from a
user’s perspective, nothing has changed conceptually.

4.14 Terrain

I retired the ClodTerrain* classes. That continuous level of detail algorithm is quite old and not needed
given the power and memory of current generation graphics cards.

5 LibPhysics

I have made some changes to the physics library involving collision detection and fluids.

5.1 CollisionDetection

The collision detection code used to live in the graphics library. I wanted to move it to the physics library
without causing a compiler dependency between the two. To do this, the collision detection code has been
converted to use templates. The two template parameters are Mesh and Bound. These classes must be
instantiated with classes that include the following interfaces.

Class Mesh must have the following functions in its interface.

int GetNumVertices () const;

Float3 GetPosition (int i) const;

int GetNumTriangles () const;

bool GetTriangle (int triangle, int& i0, int& i1, int& i2) const;

bool GetModelTriangle (int triangle, APoint* modelTriangle) const;

bool GetWorldTriangle (int triangle, APoint* worldTriangle) const;

const Transform& GetWorldTransform () const;

Class Bound must have the following functions in its interface.

Bound (); // default constructor

void ComputeFromData (int numElements, int stride, const char* data);

void TransformBy (const Transform& transform, Bound& bound) const;

bool TestIntersection (const Bound& bound) const;

bool TestIntersection (const Bound& bound, float tmax,

const AVector& velocity0, const AVector& velocity1) const;

44



Of course, in Wild Magic you instantiate with TriMesh and Bound. However, it is relatively easy to use other
mesh and bound classes and add to them the few interface functions required.

WM4 had an Object-derived class BoundingVolume which is now a non-Object-derived class Bound. The
WM4 class BoundingVolumeTree is replaced by the template class BoundTree. The template class avoids
having explicit derived classes such as BoxBVTree and SphereBVTree. The Bound template parameter can
represent any bounding volume container you choose to implement.

Because BoundTree is templated, the CollisionRecord and CollisionGroup classes need to have the same
template parameters. Moreover, these classes have some requirements for the Mesh template parameter.
Specifically, the mesh class needs to provide access to its triangles.

5.2 Fluid

This is a new folder for the physics library. It contains a CPU-based implementation for solving the Navier-
Stokes equation in 2D and in 3D on regular grids. Sample physics applications that use the solvers are
Fluids2D and Fluids3D. The description of the classes and the sample applications are in Game Physics,
2nd edition.

5.3 Intersection

The code is essentially the same, but some class names changed. We now have classes IntervalManager,
RectangleManager, and BoxManager for the sort-and-sweep space-time coherent collision culling. Game
Physics, 2nd edition uses the new class names. The book also talks about how BoxManager can be im-
plemented using multithreading, using multiple cores (Xbox 360), and on specialized processors (SPUs on
PS3).

5.4 LCPSolver

The LCP solver has not changed. Eventually, I hope to replace this with an implementation of the velocity-
based dynamics described in Game Physics, 2nd edition.

5.5 ParticleSystem

The particle system code has not changed.

5.6 RigidBody

The rigid body code has not changed.

45



6 LibImagics

Nothing has changed in the LibImagics library. The WM4 and WM5 services are exactly the same except
that I recently fixed the performance problems with the 2D and 3D connected component labelers. The
WM4 fixes have been posted, but the WM5 version will occur with the post of Wild Magic 5.2 patch.

7 LibApplications

The application layer has not changed much. I added a static member Application::ThePath. This stores
the path to the project folder of the application; you must support this by providing a console/window title
(string) that is a path to the project folder relative to the path stored in the WM5 PATH environment variable.

A change that I have not yet posted for either WM4 or WM5 is the replacement of the console/window title
with std::string instead of const char*. If you need the console/window title to store other information,
such as an input file your application is processing, you can safely change the string during an OnPrecreate

call without destroying the environment-path mechanism that relies on knowing the project folder location.

The main function has been restructured based on the changes for path finding. It also has specific calls to
Initialize and Terminate for the memory management system of WM5.

The Microsoft Windows stub is Wm5WinApplication.cpp and serves as the place WindowApplication::Main
lives, whether DirectX or OpenGL. This consolidates the Windows code into one source file (rather than
maintaining separate files for DirectX and OpenGL).

The Main function has some new code. The Camera class needs its normalized depth model specified based
on graphics API. The redesign of the Renderer class and how a renderer is created affects the initialization.

8 Tools

Only a few tools are provided right now.

8.1 GenerateProjects

This is similar to the same-named project I provided in WM4. You can use this tool to generate the Microsoft
Visual Studio 2008 vcproj file and the Xcode subfolder and project file for an application. These project
files have all the compiler settings and library link information that are present in the sample applications.
The usage is

GenerateProjects MyProjectName

The output is MyProjectName VC90.vcproj and a subfolder named MyProjectName.xcodeproj. The sub-
folder contains a file project.pbxproj. The subfolder can be copied to a Macintosh (by network or by
sneaker net).
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8.2 BmpToWmtf

This is a simple tool that runs on Microsoft Windows. It loads a 24-bit BMP file and stores it as a Wild
Magic 5 WMTF file, the raw texture format for loading in WM5 The usage is

BmpToWmtf MyBmpFile

The output format is Texture::TF A8R8G8B8 and the alpha channel is filled with 255. If you want a constant
alpha channel of your own choosing, say, of value 128, use

BmpToWmtf -a 128 MyBmpFile

The specified file must be without the BMP extension (I need to fix this and allow it or not). If you want a
constant alpha channel

8.3 WmfxCompiler

This tool generates Wild Magic 5 WMFX files that encapsulate the shader programs for all the supported
profiles. The tool calls the Cg compiler for an FX file specified on the command line. It does so for the
profiles: vs 1 0, vs 2 0, vs 3 0, arbvp1, ps 1 0, ps 2 0, ps 3 0, and arbfp1. Whether all compiles succeed
depends on the shader model and what your shader programs are trying to do. Failure to compile a profile
does not cause the tool to abort. The output WMFX file contains support for those profiles that were
compiled successfully. I write log files to indicate what has (or has not) happened. Of course, you can still
see the Cg warnings and errors when you run this tool.

Sometimes the profiles arbvp1 and arbfp1 are not enough to compile a shader. For example, vertex tex-
turing requires a profile of vp40. You can compile such shaders manually and either hard-code them in the
application code or manually generate a WMFX file.

8.4 ObjMtlImporter

This is a simple and not fully featured importer for the Wavefront OBJ and MTL file formats. It has
sufficed for me for basic geometry and materials. The folder has only source code that you include in your
application. Later I will provide some sort of stand-alone tool. Within your source code, you can query the
loader class to obtain relevant information about your vertices, triangles and materials.

8.5 WmtfViewer

This is a simple viewer for Texture2D images. Eventually I can add support to view cube maps and mipmap
levels. For now, this tool is useful for debugging render targets. You can save the texture of the render
target to disk and view it with this tool to see what is (or is not) working correctly.

One warning. The code maps color channels to a normalized color range. The textures might have different
hues than the original images that were used to generate the WMTF files. I fixed this in a local copy of the
viewer and need to post them (in Wild Magic 5.2 patch).
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8.6 BmpColorToGray

This is probably not useful for graphics, but I use this to convert 24-bit color BMP files to gray scale images
for screen captures in my books.

9 The Future of Wild Magic

After years of maintaining an abstract rendering API that hides Direct X, OpenGL, and software rendering,
the conclusion is that each underlying API suffers to some extent from the abstraction. Given my desire to
provide a cross-platform graphics engine, it makes sense to focus on OpenGL. As of the time of writing this
document, I have no plans to ship something called Wild Magic 6.

This is not a judgment of whether OpenGL or DirectX is the better graphics API. Supporting multiple
platform-dependent renderers slows down the evolution of the platform-independent engine code, so focusing
on only one graphics API should speed up new development. Given the requests for graphics support on cell
phones and given the abundance of OpenGL support for desktops and embedded devices, it makes sense to
abandon DirectX for now.

The Wild Magic source code will be split and evolve along two paths.

The mathematics portion of the source code will become part of a product called the Malleable Mathematics
Library. Most of this code is not graphics related, and the emphasis will be on robustness, speed, and
accuracy of the implementations. This includes developing implementations that use any SIMD support on
the CPUs, that run on multiple cores, and that can use the GPU as a general-purpose processor. When
robustness and accuracy are of the utmost importance and speed is not an issue, some of the algorithms will
have implementations that use exact rational arithmetic and/or arbitrary precision floating-point arithmetic.

The graphics portion of the source code will become part of a product called EmeraldGL. The renderer layer
will still hide any explicit dependence on OpenGL, but the hiding is relatively shallow and the architecture
of the renderer and graphics engine will be driven by the OpenGL/GLSL view of graphics. This product
will run on desktop computers (OpenGL 2.0 or later) and on embedded devices (via OpenGL ES 2.0), using
GLSL (or whatever variant is necessary for embedded devices). Naturally, not everything that runs on a
desktop will run on an embedded device, but the engine will allow you to work with either. EmeraldGL will
have the minimal amount of code for basic mathematics that graphics requires (points, vectors, matrices,
planes, quaternions) and will use SIMD and/or GPU when it makes sense.

Perhaps in the future I will return to supporting DirectX, maybe creating EmeraldDX, but that remains to
be seen.
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